EVALUATION OF USER PERCEPTIONS AND SATISFACTION THROUGH SENTIMENT ANALYSIS NEWS APPLICATIONS WITH NAIVE BAYES
DOI:
https://doi.org/10.33480/techno.v20i2.7356Keywords:
indoBERT, Naive Bayes, Online News Application , Sentiment Analysis , SMOTEAbstract
The development of digital technology has driven the transformation of mass media into online news platforms such as Detikcom, Kompas.id, and CNN Indonesia. Competition among these news applications has created the need to evaluate user perceptions of service quality. This study aims to analyze user sentiment toward the three news applications based on reviews from the Google Play Store. The methods employed include web scraping, text pre-processing, labeling using the IndoBERT model, feature extraction with the TF-IDF method, and sentiment classification with the Naive Bayes algorithm. To address class imbalance in the dataset, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. Model evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results show that the Naive Bayes model achieved high accuracy, namely 88.5% for Kompas.id, 88.8% for Detikcom, and 90.8% for CNN Indonesia. The analysis also revealed that positive reviews are more dominant, although recurring criticisms were identified regarding advertisements and technical performance of the applications. The use of Generative AI further assisted in automatically summarizing opinions and sentiment patterns. These findings provide valuable insights for developers in enhancing user experience and refining the features of digital news applications
References
Arlovin, T., Kusrini, & Kusnawi. (2024). Analisis Sentimen Review Pengguna Aplikasi Fizzo Novel Di Google Play Menggunakan Algoritma Naive Bayes. Jurnal Informatika Teknologi Dan Sains (Jinteks), 6(1), 65–70. https://doi.org/10.51401/jinteks.v6i1.3909
Br Sinulingga, J. E., & Sitorus, H. C. K. (2024). Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF. Jurnal Manajemen Informatika (JAMIKA), 14(1), 42–53. https://doi.org/10.34010/jamika.v14i1.11946
Ernianti Hasibuan, & Elmo Allistair Heriyanto. (2022). Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier. Jurnal Teknik Dan Science, 1(3), 13–24. https://doi.org/10.56127/jts.v1i3.434
Fatkhudin, A., Artanto, F. A., & Safli, N. A. (2024). Decision Tree Berbasis SMOTE Dalam Analisis Sentimen Penggunaan Artificial Intelligence Untuk Skripsi. REMIK: Riset Dan E …, 8(April), 494–505. Retrieved from https://www.jurnal.polgan.ac.id/index.php/remik/article/view/13531%0Ahttps://www.jurnal.polgan.ac.id/index.php/remik/article/download/13531/2453
Haas, J., Yolland, W., & Rabus, B. (2022). Inducing Early Neural Collapse in Deep Neural Networks for Improved Out-of-Distribution Detection. 1–19. Retrieved from http://arxiv.org/abs/2209.08378
Hapsari, S. K., & Priliantini, A. (2025). PROSES PRODUKSI BERITA PADA LAMAN. 7(1), 57–73.
Kusnia, U., & Kurniawan, F. (2022). Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes INFO ARTIKEL ABSTRAK. Jurnal Keilmuan Dan Aplikasi Teknik Informatika, 14(1)(36), 24–25. Retrieved from https://doi.org/10.35891/explorit
Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(9), 4305–4313.
Nadira, A., Setiawan, N. Y., & Purnomo, W. (2023). Analisis Sentimen Pada Ulasan Aplikasi Mobile Banking Menggunakan Metode Naïve Bayes Dengan Kamus Inset. Indexia, 5(01), 35. https://doi.org/10.30587/indexia.v5i01.5138
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Nurtikasari, Y., Syariful Alam, & Teguh Iman Hermanto. (2022). Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes. INSOLOGI: Jurnal Sains Dan Teknologi, 1(4), 411–423. https://doi.org/10.55123/insologi.v1i4.770
Rina Noviana, & Isram Rasal. (2023). Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter. Jurnal Teknik Dan Science, 2(2), 51–60. https://doi.org/10.56127/jts.v2i2.791
Samiaji, A., Hananto, B., & Kom, S. (2022). Analisis Sentimen Review Aplikasi Berita Online Pada Google Play Menggunakan Metode Naïve Bayes Studi Kasus: Tribunnews.Com. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), (2), 733–743.
Septiani, D., & Isabela, I. (2022). Analisis Term Frequency Inverse Document Frequency (Tf-Idf) Dalam Temu Kembali Informasi Pada Dokumen Teks. SINTESIA: Jurnal Sistem Dan Teknologi Informasi Indonesia, 1(1), 81–88.
Tanggraeni, A. I., & Sitokdana, M. N. N. (2022). Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 785–795. https://doi.org/10.35957/jatisi.v9i2.1835
Tarwoto, Nugroho, R., Azka, N., & Graha, W. S. R. (2025). Analisis Sentimen Ulasan Aplikasi Mobile JKN di Google PlayStore Menggunakan IndoBERT. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 9(2), 495–505. https://doi.org/10.35870/jtik.v9i2.3340
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aldiansyah Kusuma Kusuma, Diaz Aditya Yudha, Muhammad Bahril Afwa, Hanafi Eko Darono

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of any article in the TECHNO Nusa Mandiri Journal is fully held by the author under the Creative Commons CC BY-NC license. The copyright in each article belongs to the author. Authors retain all their rights to published works, not limited to the rights set out on this page. The author acknowledges that Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) is the first to publish with a Creative Commons Attribution 4.0 International license (CC BY-NC). Authors can enter articles separately, manage non-exclusive distribution, from manuscripts that have been published in this journal into another version (for example: sent to author affiliation respository, publication into books, etc.), by acknowledging that the manuscript was published for the first time in Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri); The author guarantees that the original article, written by the stated author, has never been published before, does not contain any statements that violate the law, does not violate the rights of others, is subject to the copyright which is exclusively held by the author. If an article was prepared jointly by more than one author, each author submitting the manuscript warrants that he has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to notify the co-authors of the terms of this policy. Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) will not be held responsible for anything that may have occurred due to the author's internal disputes.