PENERAPAN ALGORITMA K-MEANS UNTUK KLASTERISASI PENDUDUK MISKIN DI PROVINSI BANTEN

  • Frisma Handayanna Universitas Nusa Mandiri
Keywords: Clustering, K-Means, Penduduk Miskin

Abstract

Abstract People with low incomes are unable to obtain education and other government services. The problem of poverty faced by the government is closely related to people with low incomes who cannot meet their basic needs. The Central Bureau of Statistics describes poverty as the inability to meet basic food and non-food needs as measured by expenditure. This study aims to classify Banten province based on poverty levels, by dividing the number of poor people into high, medium, and low categories. The K-Means clustering method is very fast and easy to use in the K-Means algorithm clustering process. Where the grouping results are formed, namely group one has a moderate number of poor people in three districts/cities, Pandeglang Regency, Lebak Regency, and Tangerang Regency. The second group has the lowest population in one district/city, namely Tangerang City. The third group has the highest number of poor people in the four districts/cities, namely Serang Regency, Cilegon Regency, Serang City, and South Tangerang City. The clustering results show that the Provincial Government of Banten will give priority and special attention to poverty alleviation efforts in the district/city. This will allow for increased revenues and earnings, as well as improved livelihoods and the economy in the area. the K-Means algorithm can classify the poor based on the number of people per district or city in Banten Province.

Downloads

Download data is not yet available.

References

Amanda, & Sitorus, M. V. (2021). Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Konsumsi Produk Kosmetik milik PT Cedefindo. Jurnal Ilmiah MIKA AMIK Al Muslim, V(2), 63–68.

Aprilia, K., & Sembiring, F. (2021). Analisis Garis Kemiskinan Makanan Menggunakan Metode Algoritma K-Means Clustering. Informasi Dan Manajemen Informatika, 2(4), 1–10.

Arkham, D., & Swanjaya, D. (2020). K-Means Method For Clustering Public Service Assessment of Goverment Organization In Kediri City. Prosiding SEMNAS INOTEK …, 155–160. https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/79

Aziz, F. N. R. F. J., Setiawan, B. D., & Arwani, I. (2018). Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(6), 2243–2251.

Bahauddin, A., Fatmawati, A., & Permata Sari, F. (2021). Analisis Clustering Provinsi Di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means. Jurnal Manajemen Informatika Dan Sistem Informasi, 4(1), 1–8. https://doi.org/10.36595/misi.v4i1.216

Febriansyah, F., & Muntari, S. (2023). Penerapan Algoritma K-Means untuk Klasterisasi Penduduk Miskin pada Kota Pagar Alam. JISKA (Jurnal Informatika Sunan Kalijaga), 8(1), 66–77. https://doi.org/10.14421/jiska.2023.8.1.66-77

Hablum, R., Khairan, A., & Rosihan, R. (2019). Clustering Hasil Tangkap Ikan Di Pelabuhan Perikanan Nusantara (Ppn) Ternate Menggunakan Algoritma K-Means. JIKO (Jurnal Informatika Dan Komputer), 2(1), 26–33. https://doi.org/10.33387/jiko.v2i1.1053

Mirawati, F., & Feriyanto, N. (2023). Jurnal Kebijakan Ekonomi dan Keuangan Faktor-Faktor yang memengaruhi jumlah penduduk miskin di Provinsi Banten Tahun 2011-2020. 2(1), 78–85. https://doi.org/10.20885/JKEK.vol2.iss1.art9

Munandar, T. A. (2022). Penerapan Algoritma Clustering Untuk Pengelompokan Tingkat Kemiskinan Provinsi Banten. JSiI (Jurnal Sistem Informasi), 9(2), 109–114. https://doi.org/10.30656/jsii.v9i2.5099

Nugraha, I. W. S. A. (2023). Clustering Pemetaan Tingkat Kemiskinan di Provinsi Jawa Barat Menggunakan Algoritma K-Means. Jurnal Ilmiah Wahana Pendidikan, Januari, 9(2), 234–244. https://doi.org/10.5281/zenodo.7567622.

Pratiwi, E. D., Ashar, K., & Syafitri, W. (2020). Dampak Kemiskinan Terhadap Pola Mobilitas Tenaga Kerja Antarsektor Di Indonesia. Jurnal Kependudukan Indonesia, 15(1), 1. https://doi.org/10.14203/jki.v15i1.473

Sari, Y. A. (2021). Pengaruh Upah Minimum Tingkat Pengangguran Terbuka Dan Jumlah Penduduk Terhadap Kemiskinan Di Provinsi Jawa Tengah. Equilibrium : Jurnal Ilmiah Ekonomi, Manajemen Dan Akuntansi, 10(2), 121–130. https://doi.org/10.35906/je001.v10i2.785

Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer. CESS (Journal of Computer Engineering, System and Science), 5(2), 192. https://doi.org/10.24114/cess.v5i2.18519

Sembiring, Y. R., & Saifullah, R. W. (2021). Implementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algoritma. Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 2(2), 125–132. https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/67

Wanto, A., Siregar, M. N. H., Windarto, A. P., Hartama, D., Ginantra, N. L. W. S. R., Napitupul, D., Negara, E. S., Lubis, M. R., Dewi, S. V., & Prianto, C. (2020). Data Mining: Algoritma dan Implementasi. Yayasan Kita Menulis.

Published
2023-08-09
How to Cite
Handayanna, F. (2023). PENERAPAN ALGORITMA K-MEANS UNTUK KLASTERISASI PENDUDUK MISKIN DI PROVINSI BANTEN. INTI Nusa Mandiri, 18(1), 93 - 99. https://doi.org/10.33480/inti.v18i1.4399

Most read articles by the same author(s)