PENERAPAN PSO UNTUK SENTIMEN ANALISIS PADA REVIEW MATA UANG KRIPTO MENGGUNAKAN METODE NAÏVE BAYES
Abstract
In the digital age emerging currencies using digital technology called currency crypto money. Many people use cryptocurrencies to invest. This triggered the sentiment in society on social media twitter, there are positive opinions and there are negative opinions. The purpose of this study is to determine the public sentiment regarding the review of crypto currency and then classify it into two sentiments, namely positive and negative sentiments. The classifier method used is Naïve Bayes, Naïve Bayes is a good classifier method but has shortcomings in the selection of features therefore Particle Swarm Optimization (PSO) is applied as a feature selection in order to improve the accuracy value. After conducted experiments using Naïve Bayes method, obtain accuracy value of 66% with AUC 0.482 and after Applied Particle Swarm Optimization (PSO) as feature selection in Naïve Bayes obtain accuracy value of 85% with AUC 0.716 has increased accuracy .
Downloads
References
Abdillah, H. (2023). Hukum Cryptocurrency sebagai Mata Uang dan sebagai Komoditas (Analisis Fatwa MUI tentang Hukum Cryptocurrency). Jurnal Ilmiah Ekonomi Islam, 9(3), 4245-4255, doi: http://dx.doi.org/10.29040/jiei.v9i3.10269.
Andika, L. A., Azizah, P. A. N., & Respatiwulan, R. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Classifier. Indonesian Journal of Applied Statistics, 2(1), 34. https://doi.org/10.13057/ijas.v2i1.29998
Bayulianto, S., Purnamasari, I., & Jajuli, M. (2023). Prediksi Tingkat Kemenangan Mobile Legends Profesional League Indonesia Season 9 Dengan Menggunakan Algoritma Naïve Bayes. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 8(2), 538-550, doi: https://doi.org/10.29100/jipi.v8i2.3562.
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naïve Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744
Hadian, A. I., Sari, I. N., Happy, F., & Tobing, S. (2022). Arah Investasi Kripto 2022 di Tengah Kepungan Berita Panas.
Heradhyaksa, B. (2023). Peningkatan Pemahaman Hukum Investasi Mata Uang Kripto di Indonesia. Abdimas Singkerru, 3(1), 6-16, doi: https://doi.org/10.59563/singkerru.v2i2.168.
Irnawati, O., & Solecha, K. (2023). Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Berbasis Particle Swarm Optimization Pada Analisis Sentimen Ulasan Aplikasi Flip. JIEET (Journal of Information Engineering and Educational Technology), 7(1), 10-15, doi: https://doi.org/10.26740/jieet.v7n1.p10-15.
Nizar, M. A. (2020). The Controversies of Digital Currency. Munich Personal RePEc Archive (MPRA), 97940, 1–22.
Prasetyo, S. D., Hilabi, S. S., & Nurapriani, F. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 1-7, doi: https://doi.org/10.35134/komtekinfo.v10i1.330.
Rahman Isnain, A., Indra Sakti, A., Alita, D., & Satya Marga, N. (2021). Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma SVM. Jdmsi, 2(1), 31–37, doi: https://doi.org/10.33365/jdmsi.v2i1.1021.
Rifaldi, D., & Fadlil, A. (2023). Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet “Mental Health”. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 161-171, doi: https://doi.org/10.51454/decode.v3i2.131.
Safitri, M. E., & Almadani, A. D. (2023). Analisis Sentimen Tingkat Kepuasan Pengguna Pada Survei Aplikasi Ceisa Direktorat Jenderal Bea Dan Cukai. Ismetek, 16(2).
Sari, R., & Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naïve Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), 51–60. https://doi.org/10.31294/ijse.v5i2.6957
Wati, R. (2020). Penerapan Algoritma Naïve Bayes Dan Particle Swarm Optimization Untuk Klasifikasi Berita Hoax Pada Media Sosial. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(2), 159–164. https://doi.org/10.33480/jitk.v5i2.1034
Wulandari, L. (2023). Penerapan Text Mining Pada Search Engine (Studi Kasus E-Commerce Shopee). Jurnal Teknologi Informasi, Manajemen dan Bisnis Digital, 21-27.
Copyright (c) 2024 Nita Merlina, Ade Chandra, Nissa Almira Mayangky
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.