PENERAPAN ALGORITMA CNN MENGGUNAKAN FRAMEWORK YOLO UNTUK DETEKSI OBJEK PRODUK DI PERUSAHAAN MANUFAKTUR
Abstract
Component products used for manufacturing a machine in manufacturing companies have two types of products, type A and B. The problem that often occurs in the industry is product sorting errors due to the traditional sorting process, using human labor. The disadvantages are limited human labor so that fatigue can occur, causing errors in sorting products and losses for the company. Many studies discuss object detection, Industrial problems in the checking process can be approached with the help of this technology. Object detection works to analyze frames with the method of finding objects. There are methods in digital image processing, CNN algorithms which include methods in computer vision. The growing framework makes the CNN algorithm more powerful. YOLO includes a framework based on the CNN algorithm. YOLOv5 detects objects by taking into account the object's confidence value, the output of the detected object is a bounding box on the object. The problem in the industry in the checking process can be approached with the help of this technology. For this reason, this research aims to create a model for product object detection in manufacturing companies. The process carried out is data collection, image annotation, training, testing, evaluation. The images collected were 137 for training data and 34 for validation data totaling 171 image data. The results of the model using YOLOv5 with epoch 1000 get a precision value of 100%, recall 100% and mAP 99%, the product detection results get an average value of 100%.
Downloads
References
Al Duhayyim, M., Alabdulkreem, E., Tarmissi, K., Aljebreen, M., El Khier, B. S. I. A., Zamani, A. S., Yaseen, I., & I. Eldesouki, M. (2022). Aquila Optimization with Transfer Learning Based Crowd Density Analysis for Sustainable Smart Cities. Applied Sciences (Switzerland), 12(21). https://doi.org/10.3390/app122111187
Agustian, I., Hadi, F., Khairul, M., & Rosa, A. (2019). Pre-Diagnosis Gangguan Ginjal Melalui Citra Iris Mata Menggunakan Raspberry PI Dengan Metode Convolutional Neural Network (CNN). In Jurnal Amplifier Mei (Vol. 9, Issue 1).
Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). Cnn variants for computer vision: History, architecture, application, challenges and future scope. In Electronics (Switzerland) (Vol. 10, Issue 20). MDPI. https://doi.org/10.3390/electronics10202470
Chiu, Y.-C., Tsai, C.-Y., Ruan, D., Shen, G.-Y., & Lee, T.-T. (2020). Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems. International Conference on System Science and Engineering (ICSSE).
Fang, W., Wang, L., & Ren, P. (2020). Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments. IEEE Access, 8, 1935–1944. https://doi.org/10.1109/ACCESS.2019.2961959
Glucina, M., Andelic, N., Lorencin, I., & Car, Z. (2023). Detection and Classification of Printed Circuit Boards Using YOLO Algorithm. Electronics (Switzerland), 12(3). https://doi.org/10.3390/electronics12030667
Gothane, Dr. S. (2021). A Practice for Object Detection Using YOLO Algorithm. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 268–272. https://doi.org/10.32628/cseit217249
Hatab, M., Malekmohamadi, H., Amira, A. (2021). Surface Defect Detection Using YOLO Network. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham. https://doi.org/10.1007/978-3-030-55180-3_37
Kundu, N., Rani, G., & Dhaka, V. S. (2021). Seeds Classification and Quality Testing Using Deep Learning and YOLO v5. ACM International Conference Proceeding Series, 153–160. https://doi.org/10.1145/3484824.3484913
Kurniasari, N., & Sugiono, J. P. (2021). Deteksi Jalur Yang Terputus Pada Rangkaian Listrik Dalam Pcb Menggunakan Metode Convolutional Neural Network (CNN). In Surabaya Jurnal Sistem Cerdas dan Rekayasa (JSCR) (Vol. 3, Issue 1).
Leamsaard, J., Charoensook, S. N., & Yammen, S. (2021). Deep Learning-based Face Mask Detection Using YoloV5. International Electrical Engineering Congress, IEECON 2021, 428–431. https://doi.org/10.1109/iEECON51072.2021.9440346
Li, W., Shen, Z., & Li, P. (2019). Crack Detection of Track Plate Based on YOLO. Proceedings - 2019 12th International Symposium on Computational Intelligence and Design, ISCID 2019, 15–18. https://doi.org/10.1109/ISCID.2019.10086
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827
Narvekar, C., & Rao, M. (2020). Flower classification using CNN and transfer learning in CNN-Agriculture Perspective. Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, 660–664. https://doi.org/10.1109/ICISS49785.2020.9316030
Raj, R., Nagaraj, S. S., Ritesh, S., Thushar, T. A., & Aparanji, V. M. (2021). Fruit Classification Comparison Based on CNN and YOLO. IOP Conference Series: Materials Science and Engineering, 1187(1), 012031. https://doi.org/10.1088/1757-899x/1187/1/012031
Sary, I. P., Armin, E. U., Andromeda, S. (2023). Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images. Ultima Computing : Jurnal Sistem Komputer, Vol. 15, No.1
Simbolon, R., & Santoso, S. (2021). Product And Service Quality Development In Manufacturing: A Study Of Optical Lens Manufacturing Indonesia. Media Ekonomi Dan Manajemen, 36(1). https://doi.org/10.24856/mem.v36i1.1726
Sobron, M., Lubis Bidang, Y., Manufaktur, T., Teknik, P., Jurusan, M., Industri, T., & Kunci, K.-K. (2021). Implementasi Artificial Intelligence Pada System Manufaktur Terpadu. SEMNASTEK UISU: 978-623-7297-39-0
Strbac, B., Gostovic, M., Lukac, Z., & Samardzija, D. (2020). YOLO Multi-Camera Object Detection and Distance Estimation. In 2020 Zooming Innovation in Consumer Technologies Conference (ZINC).
Thuan, Do. (2021). Evolution Of Yolo Algorithm And Yolov5: The State-Of-The-Art Object Detection Algorithm. Oulu: Oulu University of Applied Sciences
Undang-undang Republik Indonesia Nomor 3 tentang Perindustrian 2014. Jakarta.
Wang, X., Wu, Z., Jia, M., Xu, T., Pan, C., Qi, X., & Zhao, M. (2023). Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory. Sensors (Basel, Switzerland), 23(6). https://doi.org/10.3390/s23063336
Xiao, J. (2021). ExYOLO: A small object detector based on YOLOv3 Object Detector. Procedia CIRP, 188, 18–25. https://doi.org/10.1016/j.procs.2021.05.048
Yedla, S. K., Manikandan, V. M., & Panchami, V. (2020). Real-Time Scene Change Detection with Object Detection for Automated Stock Verification. ICDCS 2020 - 2020 5th International Conference on Devices, Circuits and Systems, 157–161. https://doi.org/10.1109/ICDCS48716.2020.243571
Yi, Z., Yongliang, S., & Jun, Z. (2019). An improved tiny-yolov3 pedestrian detection algorithm. Optik, 183, 17–23. https://doi.org/10.1016/j.ijleo.2019.02.038
Zhang, S., Wu, Y., Men, C., & Li, X. (2020). Tiny yolo optimization oriented bus passenger object detection. Chinese Journal of Electronics, 29(1), 132–138. https://doi.org/10.1049/cje.2019.11.002
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection with Deep Learning: A Review. In IEEE Transactions on Neural Networks and Learning Systems (Vol. 30, Issue 11, pp. 3212–3232). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TNNLS.2018.2876865
Copyright (c) 2024 Asep Maulana, Maman Suherman, Anis Fitri Nur Masruriyah, Hilda Yulia Novita
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.