OPTIMISASI PEMILIHAN FITUR UNTUK PREDIKSI GAGAL JANTUNG: FUSION RANDOM FOREST DAN PARTICLE SWARM OPTIMIZATION

  • Imam Nawawi (1*) Universitas Bina Sarana Informatika

  • (*) Corresponding Author
Keywords: feature selection, optimization, particle swarm optimization, random forest

Abstract

Heart failure is a serious, life-threatening cardiovascular disease that increases with age and unhealthy lifestyles. Early prediction is essential to provide timely treatment and reduce mortality. The use of machine learning techniques, especially the Random forest (RF) method, for predicting heart failure has been previously researched, so the problem that occurs is that the RF method does not have maximum results because of irrelevant features. Selection of relevant features is a key step in building an accurate prediction model. Particle Swarm Optimization (PSO) is used to improve feature selection by searching for optimal combinations. The aim of the research is to reduce the mortality rate by improving the RF method with relevant features so as to increase the accuracy of predictions with Fusion RF and PSO. The results show an increase in accuracy of 02.78% to 87.33% with PSO, although the AUC decreased by 0.031%. The advantage of PSO is a significant increase in accuracy, but the disadvantage is a slight decrease in AUC. Future developments could explore how to address AUC degradation without compromising accuracy and transmitting additional relevant features.

Downloads

Download data is not yet available.

References

Alotaibi, F. S. (2019). Implementation of machine learning model to predict heart failure disease. International Journal of Advanced Computer Science and Applications, 10(6), 261–268. https://doi.org/10.14569/ijacsa.2019.0100637

Ariyati, I., Rosyida, S., Ramanda, K., Riyanto, V., Faizah, S., & Ridwansyah. (2020). Optimization of the Decision Tree Algorithm Used Particle Swarm Optimization in the Selection of Digital Payments. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012090

Bumbungan, S., Kusrini, & Kusnawi. (2023). Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika. Jurnal Teknik AMATA, 4(1), 81–93, doi: https://doi.org/10.55334/jtam.v4i1.77.

Chicco, D., & Jurman, G. (2020). Machine Learning Can Predict Survival of Patients with Heart Failure From Serum Creatinine and Ejection Fraction Alone. BMC Medical Informatics and Decision Making, 20(1), 1–16. https://doi.org/10.1186/s12911-020-1023-5

Hendra, Azis, M. A., & Suhardjono. (2020). Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107. https://doi.org/https://doi.org/10.32736/sisfokom.v9i1.756

Iqbal, M., Herliawan, I., Ridwansyah, Gata, W., Hamid, A., Purnama, J. J., & Yudhistira. (2020). Implementation of Particle Swarm Optimization Based Machine Learning Algorithm for Student Performance Prediction. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 6(2), 195–204. https://doi.org/10.33480/jitk.v6i2.1695

Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access, 9, 39707–39716. https://doi.org/10.1109/ACCESS.2021.3064084

Mamun, M., Farjana, A., Mamun, M. Al, Ahammed, M. S., & Rahman, M. M. (2022). Heart failure survival prediction using machine learning algorithm: am I safe from heart failure? 2022 IEEE World AI IoT Congress (AIIoT). https://doi.org/10.1109/AIIoT54504.2022.9817303

Pal, M., & Parija, S. (2021). Prediction of Heart Diseases using Random forest. Journal of Physics: Conference Series, 1817(1). https://doi.org/10.1088/1742-6596/1817/1/012009

Ridwansyah, Ariyati, I., & Faizah, S. (2019). Particle Swarm Optimization Berbasis Co-Evolusioner Dalam Evaluasi Kinerja Asisten Dosen. Jurnal SAINTEKOM, 9(2), 166–177. https://doi.org/https://doi.org/10.33020/saintekom.v9i2.96

Riyanto, V., Hamid, A., & Ridwansyah. (2019). Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424

Sachdeva, R. K., Singh, K. D., Sharma, S., Bathla, P., & Solanki, V. (2023). An Organized Method for Heart Failure Classification. 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), doi: 10.1109/ESCI56872.2023.10099809.

Suhardjono, Wijaya, G., & Hamid, A. (2019). Prediksi Waktu Kelulusan Mahasiswa Menggunakan SVM Berbasis PSO. Bianglala Informatika, 7(2), 97–101. https://doi.org/10.31294/bi.v7i2.6654

Wijaya, G. (2024). Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease. Sinkron: jurnal dan penelitian teknik informatika, 9(1), 136-144, doi: 10.33395/sinkron.v9i1.13112.

Yaqin, A., Laksito, A. D., & Fatonah, S. (2021). Evaluation of Backpropagation Neural Network Models for Early Prediction of Student’s Graduation in XYZ University. International Journal on Advanced Science Engineering Information Technology, 11(2), doi: http://dx.doi.org/10.18517/ijaseit.11.2.11152.

Published
2024-02-01
How to Cite
Nawawi, I. (2024). OPTIMISASI PEMILIHAN FITUR UNTUK PREDIKSI GAGAL JANTUNG: FUSION RANDOM FOREST DAN PARTICLE SWARM OPTIMIZATION. INTI Nusa Mandiri, 18(2), 122-128. https://doi.org/10.33480/inti.v18i2.5031
Article Metrics

Abstract viewed = 34 times
PDF downloaded = 34 times