CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS

  • Gion Andrian Universitas Tarumanagara
  • Desi Arisandi Universitas Tarumanagara
  • Teny Handhayani Universitas Tarumanagara
Keywords: climate change, clustering, fuzzy c-means, k-means, meteorology

Abstract

Climate change is a global issue that affect human life and the environment. Signs of climate change can be observed from long-term meteorological data.  This research uses clustering techniques with the K-Means and Fuzzy C-Means methods to group cities in the Eastern Indonesia region based on numerical daily time series meteorological data from 1 January 2010 to 31 August 2023. The variables are minimum temperature, maximum temperature, temperature average, humidity, rainfall, duration of sunlight, maximum wind speed, and average wind speed. The dataset was collected from 28 meteorological stations. The K-Means and Fuzzy C-Means methods obtained the same results, namely the highest silhouette value of 0.218 with the number of clusters k = 2. In general, the annual trend shows an increase in temperature and a decrease in wind speed which are signs of climate change. This research is an early study of climate change in East Indonesia. The results of this research are expected to contribute to the study of climate change in Indonesia.

Downloads

Download data is not yet available.

References

Ainurrohmah, S., & Sudarti, S. (2022). Analisis Perubahan Iklim dan Global Warming yang Terjadi sebagai Fase Kritis. Jurnal Pendidikan Fisika dan Terapan, 3(1), 96-105.

Arsianty, C. (2023). Peran Dan Strategi Kelompok Tani Dalam Menghadapi Perubahan Iklim Di Desa Masbagik Selatan Kecamatan Masbagik Kabupaten Lombok Timur. Mataram: Universitas Mataram.

Biabiany, E., Bernard, D. C., Page, V., & Paugam-Moisy, H. (2020). Design of an expert distance metric for climate clustering: The case of rainfall in the Lesser Antilles. Computers & Geosciences, 145, 1-15.

Chusyairi, A. (2023). ClusteringData Cuaca Ekstrim Indonesia dengan K-Meansdan Entropi. Journal of Informatics and Communication Technology, 5(1), 1-10.

Dwitiyanti, N., Selvia, N., & Andrari, F. R. (2019). Penerapan Fuzzy C-Means Cluster dalam Pengelompokkan Provinsi Indonesia Menurut Indikator Kesejahteraan Rakyat. Faktor Exacta, 201–209.

Faeni, Y. A., Astasia, A., & Riadi, M. (2019). Pengaruh Parameter Meteorologi Terhadap Penurunan Kasus COVID-19 di DKI Jakarta. Seminar NasionalOfficial Statistics (pp. 132 - 137). Jakarta: Seminar Nasional Official Statistics.

Faisal, F., Giopani, L. A., Fitriah, M., Dwynne, Z. C., Helma, S. S., & Mustakim, M. (2022). Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE) , 128 - 134.

Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters , :2069–2094.

Handayanna, F. (2023). Penerapan Algoritma K-Means Untuk Klasterisasi Penduduk Miskin di Provinsi Banten. Jurnal INTI Nusa Mandiri, 93-99.

Handhayani, T., & Lewenusa, I. (2023). An Intelligent Clustering Approach For Analyzing A Multivariate Time Series Dataset, Case Study COVID-19 Outbreak in Indonesia. The 17th International Conference on Telecommunication Systems Services and Applications (TSSA) (pp. 1-7). Mataram: IEEE.

Handhayani, T., & Rusdi, Z. (2023). K-Means Using Dynamic Time Warping For Clustering Cities in Java Island According to Meteorological Conditions. Computer Science and Information Science (ICIC) (pp. 1-6). Malang: IEEE.

Krasnov, D., Davis, D., Malott, K., Chen, Y., Shi, X., & Wong, A. (2023). Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection. Entropy, 25(7), 1-14.

Legionosuko, T., Madjid, M. A., Asmoro, N., & Samudro, E. G. (2019). Posisi dan Strategi Indonesia dalam Menghadapi Perubahan Iklim guna Mendukung Ketahanan Nasional. Jurnal Kesehatan Nasional, 295-312.

Muzaky, H., & Jaelani, L. M. (2019). Analisis Pengaruh Tutupan Lahan terhadap Distribusi Suhu Permukaan: Kajian Urban Heat Island di Jakarta, Bandung dan Surabaya. Jurnal Penginderaan Jauh Indonesia, 1(2), 45-51.

Nozomi, I. (2023). Penerapan Data Mining Untuk Peringatan Dini Banjir Menggunakan Metode Klastering K-Means (Studi Kasus Kota Padang). Jurnal Sains Informatika Terapan, 39–44.

Sugiarto, A., & Mahagangga, I. (2020). Kendala Pengembangan Pariwisata di Destinasi Pariwisata Labuan Bajo Nusa Tenggara Timur (Studi kasus komponen produk pariwisata). Jurnal Destinasi Pariwisata, 18–25.

Utami, H. T., & Windraswara, R. (2019). Korelasi Meteorologi dan Kualitas Udara dengan Pneumonia Balita di Kota Semarang Tahun 2013-2018. HIGEIA Journal of Public Health Research and Development, 3(4), 588-598.

Published
2024-02-01
How to Cite
Andrian, G., Arisandi, D., & Handhayani, T. (2024). CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS. INTI Nusa Mandiri, 18(2), 100-106. https://doi.org/10.33480/inti.v18i2.5039