SINTESA CITRA DAUN KOPI MENGGUNAKAN GENERATIVE ADVERSARIAL NETWORK PADA DATASET PENYAKIT DAUN KOPI
Abstract
Coffee, as the second most traded commodity after petroleum, faces production challenges, especially due to pest or disease attacks on coffee leaves. Therefore, it is important to carry out early detection of the disease in order to minimize the risk and apply special treatment. Automatic detection of disease can be done through the application of Computer Vision technology. However, one of the main challenges faced is the limited training dataset. Generative Adversarial Networks (GANs) is a Deep Learning method that is capable of modifying images with high quality. This research aims to synthesize coffee leaf images based on the public Coffee Leaf Disease dataset using the GANs method. Testing was carried out using the RMSProp optimizer, the learning rate was 0.0001 and was carried out for 300 epochs. The architecture built uses 26 layers in the generator model and 15 layers in the discriminator model. The results of the test show that the drilled network obtained an MMSE value of 0.1658, which is not too high because the resulting synthesized image is not very good.
Downloads
References
Ayikpa, K. J., Mamadou, D., Gouton, P., & Adou, K. J. (2022). Experimental Evaluation of Coffee Leaf Disease Classification and Recognition Based on Machine Learning and Deep Learning Algorithms. Journal of Computer Science, 18(12), 1201–1212. https://doi.org/10.3844/jcssp.2022.1201.1212
Barile, B., Marzullo, A., Stamile, C., Durand-Dubief, F., & Sappey-Marinier, D. (2021). Data augmentation using generative adversarial neural networks on brain structural connectivity in multiple sclerosis. Computer Methods and Programs in Biomedicine, 206, 106113. https://doi.org/10.1016/j.cmpb.2021.106113
Brito Silva, Lucas; Cavalcante Carneiro, Álvaro Leandro; Silveira Almeida Renaud Faulin, Marisa (2020), “rust (Hemileia vastatrix) and leaf miner (Leucoptera coffeella) in coffee crop (Coffea arabica).”, Mendeley Data, V5, doi: 10.17632/vfxf4trtcg.5
Cerda, R., Avelino, J., Harvey, C. A., Gary, C., Tixier, P., & Allinne, C. (2020). Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Protection, 134, 105149. https://doi.org/10.1016/j.cropro.2020.105149
Jin, L., Tan, F., & Jiang, S. (2020). Generative Adversarial Network Technologies and Applications in Computer Vision. Computational Intelligence and Neuroscience, 2020(1). https://doi.org/10.1155/2020/1459107
Kalendesang, R. R., Liliana, L., & Setiabudi, D. H. (2022). Pewarnaan Otomatis Sketsa Gambar Menggunakan Metode Conditional GAN Untuk Mempercepat Proses Pewarnaan. Jurnal Infra, 10(2), 233-239.
Motamed, S., Rogalla, P., & Khalvati, F. (2021). Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Informatics in Medicine Unlocked, 27(August), 100779. https://doi.org/10.1016/j.imu.2021.100779
Patmawati, Andi Sunyoto, & Emha Taufiq Luthfi. (2023). Augmentasi Data Menggunakan Dcgan Pada Gambar Tanah. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 4(1), 45–42. https://doi.org/10.46764/teknimedia.v4i1.100
Pereira, D. R., Nadaleti, D. H. S., Rodrigues, E. C., da Silva, A. D., Malta, M. R., de Carvalho, S. P., & Carvalho, G. R. (2021). Genetic and chemical control of coffee rust (Hemileia vastatrix Berk et Br.): impacts on coffee (Coffea arabica L.) quality. Journal of the Science of Food and Agriculture, 101(7), 2836–2845. https://doi.org/10.1002/jsfa.10914
Praramadhan, A. A., & Saputra, G. E. (2021). Cycle Generative Adversarial Networks Algorithm With Style Transfer For Image Generation. arXiv preprint arXiv:2101.03921. 1–12. http://arxiv.org/abs/2101.03921
Ramadhan, M., Anwar, B., Gunawan, R., & Kustini, R. (2021). Sistem Pakar Untuk Mendiagnosa Penyakit Pada Tanaman Kopi Menggunakan Metode Teorema Bayes. Journal of Science and Social Research, 4307(June), 115–121.
Vartan, J. (2023). Coffee Cultivation and Industry in Brazil: A Comprehensive Review. International Journal of Science and Society, 5(3), 323–332. https://doi.org/10.54783/ijsoc.v5i3.751
Wildah, S. K., Agustiani, S., Latif, A., Pebrianto, R., Hasan, F. N., & Indriyani, F. (2022). In 2022 International Conference on Information Technology Research and Innovation (ICITRI) (pp. 179-183). IEEE. https://doi.org/10.1109/ICITRI56423.2022.9970214
Xu, M., Yoon, S., Jeong, Y., & Park, D. S. (2022). Transfer learning for versatile plant disease recognition with limited data. Frontiers in Plant Science, 13(November), 1–14. https://doi.org/10.3389/fpls.2022.1010981
Yorioka, D., Kang, H., & Iwamura, K. (2020). Data Augmentation for Deep Learning Using Generative Adversarial Networks. 2020 IEEE 9th Global Conference on Consumer Electronics, GCCE 2020, 516–518. https://doi.org/10.1109/GCCE50665.2020.9291963
Copyright (c) 2024 Siti Khotimatul Wildah, Abdul Latif, Toto Haryanto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.