PERBANDINGAN KRITERIA DECISION TREE PADA PENGETAHUAN MASYARAKAT PADA PEMILIHAN UMUM PRESIDEN INDONESIA

Authors

DOI:

https://doi.org/10.33480/inti.v18i2.5065

Keywords:

classification, decision tree, general election, president

Abstract

In the Presidential election, gen z as a new voter, must know in advance who the presidential candidate will be in the 2024 election as well as the election process, because if voters do not know and do not understand, it will cause the wrong choice will result in their votes cannot be used even to abstain. What factors cause milennials and gen z generations to not know about elections can be determined using a decision tree. Therefore, in this study, a questionnaire was given to millennials and gen z generation to find out whether voters know the presidential candidate to be elected. The data from the questionnaire is processed to become training data and testing data with a ratio of 70:30. Then measure the accuracy level using the C4.5 algorithm with a comparison of splitting criteria, namely gain ratio, information gain and gini index.  By knowing the right splitting criteria, the decision tree model can help overcome the problem of overfitting in the data. Overfitting occurs when the model is too complex in memorizing training data, thus failing to generalize well to read new data. The calculation results show the difference in accuracy values between Gain ratio, Information gain and Gini index, namely 81.67%, 83.33% and 83.33%. It can be concluded that for the use of Algorithm C4.5 splitting criteria Gain ratio and Gini index have the same accuracy value for accuracy measurement in this study.

Downloads

Download data is not yet available.

References

Fajriyan, F. N., Ahsan, M., & Harianto, W. (2022). Komparasi Tingkat Akurasi Information gain Dan Gain ratio Pada Metode K-Nearest Neighbor. JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 386–391.

Febriana, S. (2023, July 1). Indikator Politik: Suara Milenial dan Gen Z di Pemilu 2024 Mencapai 53%. Metrotvnews.Com. https://www.metrotvnews.com/play/b3JCyDxg-indikator-politik-suara-milenial-dan-gen-z-di-pemilu-2024-mencapai-53

Fitratun Komariah. (2023). KPU Jakarta Temukan Banyak Pemilih Kurang Paham Pemilu. Rri.Co.Id. https://www.rri.co.id/pusat-pemberitaan/pemilu/401599/kpu-jakarta-temukan-banyak-pemilih-kurang-paham-pemilu

Istiawan, D., & Khikmah, L. (2019). Implementation of C4.5 Algorithm for Critical Land Prediction in Agricultural Cultivation Areas in Pemali Jratun Watershed. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 67. https://doi.org/10.24014/ijaidm.v2i2.7569

Kurniabudi, K., Harris, A., & Mintaria, A. E. (2021). Komparasi Information gain, Gain ratio, CFs-Bestfirst dan CFs-PSO Search Terhadap Performa Deteksi Anomali. Jurnal Media Informatika Budidarma, 5(1), 332.

Kurniawan, H. (2020). Deteksi Twitter Bot menggunakan Klasifikasi Decision Tree. Jurnal Sustainable: Jurnal Hasil Penelitian Dan Industri Terapan, 9(1), 31–37.

M. Adib Al Karomi, Abdul Kharis, I. (2019). Optimasi Algoritma Naive Bayes Dengan Information gain ratio Untuk Menangani Dataset Berdimensi Tinggi. Seminar Nasional Edusaintek, 37–43.

Maharani, T., & Santosa, B. (2022). Pakar Hukum: UUD Sudah Kunci Pemilu Dilaksanakan 5 Tahun Sekali, Tak Etis Ada Amendemen. Kompas.Com. https://nasional.kompas.com/read/2022/03/09/12031701/pakar-hukum-uud-sudah-kunci-pemilu-dilaksanakan-5-tahun-sekali-tak-etis-ada

Masripah, S., Nurwulandari, D. A., & Saputra, R. A. (2022). Pencarian Criteria Splitting Terbaik Pada Algoritma C4. 5 Untuk Mengukur Pemilihan Pembelajaran Pada Era Pendemi Covid-19. Jurnal Larik: Ladang Artikel Ilmu Komputer, 2(1), 1-7.

Nurwulandari, D. A., Masripah, S., & Saputra, R. A. (2022). Optimasi Algoritma C4.5 Untuk Mengukur Keputusan Pembelajaran Daring Berbasis Particle Swarm Optimization (PSO). IJCIT (Indonesian Journal on Computer and Information Technology), 7(2), 103–110.

Prasetio, A. (2021). Simulasi Penerapan Metode Decision Tree (C4.5) Pada Penentuan Status Gizi Balita. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 4(3), 209–214.

Putra, A. R. (2023). The Implementation of Data Mining Techniques for Predicting Student Study Period Using the C4. 5 Algorithm: Penerapan Teknik Data Mining Terhadap Prediksi …. Indonesian Journal of Electrical Engineering and …, 3(December), 96–100.

Susthira, K. M. (2019). Golput Merugikan Sekaligus Mendeligitimasi Pemilu. https://mediaindonesia.com/politik-dan-hukum/226065/golput-merugikan-sekaligus-mendeligitimasi-pemilu

Tangirala, S. (2020). Evaluating the impact of Gini index and information gain on classification using decision tree classifier algorithm. International Journal of Advanced Computer Science and Applications, 11(2), 612–619.

Widiastuti, T., Karsa, K., & Juliane, C. (2022). Evaluasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Klasifikasi Algoritma C4.5. Technomedia Journal, 7(3), 364–380.

Downloads

Published

2024-02-07

How to Cite

Masripah, S., & Yusuf, L. (2024). PERBANDINGAN KRITERIA DECISION TREE PADA PENGETAHUAN MASYARAKAT PADA PEMILIHAN UMUM PRESIDEN INDONESIA. INTI Nusa Mandiri, 18(2), 183–191. https://doi.org/10.33480/inti.v18i2.5065