OPTIMASI KINERJA LINEAR REGRESSION, RANDOM FOREST REGRESSION DAN MULTILAYER PERCEPTRON PADA PREDIKSI HASIL PANEN

  • Evita Fitri Universitas Nusa Mandiri
  • Siti Nurhasanah Nugraha Universitas Nusa Mandiri
Keywords: linear regression, multilayer perceptron, random forest regression, regression model, rice prediction

Abstract

Rice yield prediction is a significant challenge in the context of climate uncertainty and farmland variation. Erratic weather factors, along with land differences, make this prediction more complex. This research aims to address these issues using a machine learning approach. The method used involves three machine learning models namely Linear regression, Random Forest Regression, and ANN with MultiLayer Perceptron algorithm as well as the evaluation matrix RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error). This research focuses on testing the accuracy of the three models in the face of uncertain seasonal conditions and variations in agricultural land. The results showed that the MultiLayer Perceptron prediction model gave the best results with an error value of 0.094. The random forest regression method ranks second with an error value of 0.510, followed by Linear regression with an error value of 0.281. The importance of outlier testing in the model development process can be seen from the significant improvement in the performance of the MultiLayer Perceptron model. This research contributes to the development of a more reliable and dependable rice yield prediction system, especially in the midst of uncertain climatic conditions. Machine learning models, particularly MultiLayer Perceptron, can be an effective solution to increase agricultural productivity and reduce risks associated with weather changes and land variations.

Downloads

Download data is not yet available.

References

Alita, D., Putra, A. D., & Darwis, D. (2021). Analysis of classic assumption test and multiple Linear regression coefficient test for employee structural office recommendation. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(3), 295.

Dardanella, D., Hidayat, A. P., Santosa, S. H., & Siskandar, R. (2022). Peramalan Harga Jual Cabai Merah Di Pasar Rakyat Kemang Perusahaan Umum Daerah Pasar Tohaga Kabupaten Bogor. Indonesian Journal of Science Learning, 3(1), 16–23.

Evita, C. (2021). Penerapan Artificial Neural Network Algoritma Backpropagation Pada Prediksi Produksi Jagung. Seminar Nasional Fortei Regional 7, 179–184.

Fitri, E. (2023). Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. Journal of Applied Computer Science and Technology, 4(1), 58–64.

Herlina, N., & Prasetyorini, A. (2020). Effect of Climate Change on Planting Season and Productivity of Maize (Zea mays L.) in Malang Regency. Jurnal Ilmu Pertanian Indonesia, 25(1), 118–128.

Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear regression untuk Prediksi Hasil Panen Tanaman Padi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 8(4), 364.

Milniadi, A. D., & Adiwijaya, N. O. (2023). Analisis Perbandingan Model Arima Dan Lstm Dalam Peramalan Harga Penutupan Saham (Studi Kasus : 6 Kriteria Kategori Saham Menurut Peter Lynch). SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(6), 1683–1692.

Nuraisah, G., & Kusumo, R. A. B. (2019). Dampak perubahan iklim terhadap usahatani padi di desa Wanguk kecamatan Anjatan kabupaten Indramayu. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 5(1), 60-71.

Putra, H., & Walmi, N. U. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(2), 100-107.

Rasna, & Matdoan, M. R. I. (2022). Metode Bayesian dan Multilayer Percepton dalam Mengklasifikasi Diabetes Mellitus. Jurnal Sistim Informasi Dan Teknologi, 4, 82–86.

Satria, A., Maulida Badri, R., & Safitri, I. (2023). Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine learning. Digital Transformation Technology (Digitech) | E, 3(2), 389–398.

Sumadi, M. I. T. B. N., Putra, R., & Firmansyah, A. (2022). Peran Perkembangan Teknologi Pada Profesi Akuntan Dalam Menghadapi Industri 4.0 Dan Society 5.0. Journal of Law, Administration, and Social Science, 2(1), 56–68.

Wardhani, R., Nafiiyah, N., & Haydar, M. A. (2022). Algoritma Deep Learning dalam Memprediksi Hasil Panen Padi di Kabupaten Lamongan. Jurnal Informatika: Jurnal Pengembangan IT, 7(1), 13–17.

Wibawa, A. P., Lestari, W., Utama, A. B. P., Saputra, I. T., & Izdihar, Z. N. (2020). Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik. Indonesian Journal of Data and Science, 1(3), 57-67.

Zulvian, S. A., Prihandani, K., & Ridha, A. A. (2021). Perbandingan Metode Msd Dan Cosine Similarity Pada Sistem Rekomendasi Item-Based Collaborative Filtering Comparison of Msd and Cosine Similarity Methods in the Item-Based Collaborative Filtering Recommendation System. Journal of Information Technology and Computer Science (INTECOMS), 4(2), 2021.

Published
2024-02-15
How to Cite
Fitri, E., & Nugraha, S. (2024). OPTIMASI KINERJA LINEAR REGRESSION, RANDOM FOREST REGRESSION DAN MULTILAYER PERCEPTRON PADA PREDIKSI HASIL PANEN. INTI Nusa Mandiri, 18(2), 210-217. https://doi.org/10.33480/inti.v18i2.5269