DETEKSI RUPIAH EMISI 2022 UNTUK DISABILITAS NETRA MENGGUNAKAN YOLOV5M DENGAN OUTPUT SUARA

  • Muhammad Farhan Mahfuzh Universitas Tidar
  • Mokhammad Nurkholis Abdillah Universitas Tidar
  • Bagus Fatkhurrozi Universitas Tidar
Keywords: 120 degree image, 2022 rupiah emission, google text to speech, YOLOv5m

Abstract

People with visual disabilities have difficulty recognizing rupiah denominations using blind codes due to differences in paper size for each denomination, wrinkled paper, and variations in blind codes for different emission years.. The proposed method uses the YOLOv5m algorithm as well as Google Text to Speech (GTTS) as voice output. The aim of the research is to find a model with the best precision value from YOLOv5m in detecting the 2022 emission rupiah and integrate it into GTTS to produce nominal rupiah sounds. The model was trained with the main image dataset, namely 700 images of rupiah emissions in 2022 taken at an angle of 1200. Next, the model was tested to recognize seven nominal amounts, namely IDR 1,000, IDR 2,000, IDR 5,000, IDR 10,000, IDR 20,000, IDR 50,000, and IDR 100,000. The test results show that the best YOLOv5m model is the one that has been trained using the main dataset (700 images) and supplemented with a multi-class image dataset (250 images) and background images (30 images). This model has a precision value of 82% when testing in real time. This research succeeded in applying the YOLOv5 algorithm which is integrated with Google Text to Speech to detect the image of 2022 emission rupiah banknotes.

Downloads

Download data is not yet available.

References

Aini, Q., Lutfian, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo. CESS (Journal of Computer Engineering, System and Science), 6(2), 192–199. https://doi.org/https://doi.org/10.24114/cess.v6i2.25840

Albar, R., & Darmawan, A. (2021). Alat Deteksi Nominal Uang Kertas Rupiah & Dollar Bagi Penyandang Tunanetra Berbsasis Arduino Uno. Journal of Informatics, 7(1), 46–55. https://doi.org/10.33143/JICS.VOL7.ISS1.1388

Alfaraz, M., & Jasril, I. R. (2022). Rancang Bangun Alat Deteksi Nominal Uang Kertas Penyandang Tuna Netra Berbasis Arduino Uno. Voteteknika (Vocational Teknik Elektronika Dan Informatika), 10(1), 28. https://doi.org/10.24036/voteteknika.v10i1.116455

Alfarizi, D. N., Pangestu, R. A., Aditya, D., Setiawan, M. A., & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. AI Dan SPK : Jurnal Artificial Intelligent Dan Sistem Penunjang Keputusan, 1(1), 54–63. https://jurnalmahasiswa.com/index.php/aidanspk/article/view/144

Alfita, R., Ibadillah, A. F., & Prianto, A. (2022). Identifikasi Nilai Nominal Uang Kertas Berdasarkan Warna Berbasis Image Processing Menggunakan Metode Template Matching. Jurnal Teknik Elektro Dan Komputer TRIAC, 9(1), 28–32. https://doi.org/10.21107/TRIAC.V9I1.12487

Arrizqi, N., Santoso, I., & Soetrisno, Y. A. A. (2021). Implementasi Google Text To Speech Pada Aplikasi Pendeteksi Uang Berbasis Android. Transient: Jurnal Ilmiah Teknik Elektro, 10(3), 510–516. https://doi.org/10.14710/transient.v10i3.510-516

Azhar, K. M., Santoso, I., & Soetrisno, Y. A. A. (2021). Implementasi Deep Learning Menggunakan Metode Convolutional Neural Network Dan Algoritma Yolo Dalam Sistem Pendeteksi Uang Kertas Rupiah Bagi Penyandang Low Vision. Transient: Jurnal Ilmiah Teknik Elektro, 10(3), 502–509. https://doi.org/10.14710/transient.v10i3.502-509

Fatukaloba, R. (2021). Sistem Alat Bantu Jalan Dan Deteksi Nominal Uang Kertas Menggunakan Sensor Ultrasonic Dan Sensor Warna Dengan Output Suara Bagi Penyandang Tuna Netra Berbasis Microkontroller. Informatika: Jurnal Teknik Informatika Dan Multimedia, 1(1), 55–69. https://doi.org/10.51903/INFORMATIKA.V1I1.31

Hafiar, H., Setianti, Y., Subekti, P., & Sani, A. (2020). Blind Code pada Uang Kertas Rupiah Pesan Komunikasi dan Komunikasi Pesan kepada Publik Disabilitas Netra. Jurnal Kawistara, 10(3), 328. https://doi.org/10.22146/kawistara.48865

Hermawan, A., Lianata, L., Junaedi, & Maranto, A. R. K. (2022). Implementasi Machine Learning Sebagai Pengenal Nominal Uang Rupiah dengan Metode YOLOv3. SATIN - Sains Dan Teknologi Informasi, 8(1), 12–22. https://doi.org/10.33372/stn.v8i1.816

Hertanto, A. R. (2022). Fitur Blind Code Mudahkan Tunanetra Kenali Uang Rupiah Kertas Tahun Emisi 2022. Kediri Nusantara. https://kedirinusantara.com/29/10/2022/fitur-blind-code-mudahkan-tunanetra-kenali-uang-rupiah-kertas-tahun-emisi-2022/

Octavian Ery Pamungkas, Puspa Rahmawati, Dhany Maulana Supriadi, Natasya Nur Khalika, Thofan Maliyano, Dicky Revan Pangestu, Nugraha, E. S., Mas Aly Afandi, Nurcahyani Wulandari, Petrus Kerowe Goran, & Agung Wicaksono1. (2022). Classification of Rupiah to Help Blind with The Convolutional Neural Network Method. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(2), 259–268. https://doi.org/10.29207/resti.v6i2.3852

Prima, A., Santoso, D. B., & Nurpulaela, L. (2022). Deteksi Otomatis Nominal Uang Kertas Rupiah Untuk Tunanetra Menggunakan Algoritma Arsitektur Ssd Mobiilenetv3. Teknokom, 6(2), 151–159. https://doi.org/10.31943/teknokom.v6i2.166

Pujianto, A., Abidin, Z., & Utomo, A. B. (2020). Identifikasi Nominal Uang Kertas Untuk Tuna Netra Berbasis Mikrokontroller Dengan Sistem Suara. JEECOM: Journal of Electrical Engineering and Computer, 2(2), 1–6. https://doi.org/10.33650/jeecom.v2i2.1303

Rachma, S. A. (2022). Terbitkan Uang Baru 2022, Bank Indonesia Dapat Masukan dari Tunanetra. Liputan6. https://www.liputan6.com/bisnis/read/5045739/terbitkan-uang-baru-2022-bank-indonesia-dapat-masukan-dari-tunanetra

Wanda Hamidah, Irawan, T. S. B., Hasbullah, N. A. P., & Kaswar, A. B. (2022). Deteksi Nominal Uang Kertas Menggunakan OCR (Optical Character Recognition). Techno Xplore : Jurnal Ilmu Komputer Dan Teknologi Informasi, 7(2), 72–76. https://doi.org/10.36805/technoxplore.v7i2.2123

Published
2024-06-26
How to Cite
Mahfuzh, M., Abdillah, M., & Fatkhurrozi, B. (2024). DETEKSI RUPIAH EMISI 2022 UNTUK DISABILITAS NETRA MENGGUNAKAN YOLOV5M DENGAN OUTPUT SUARA. INTI Nusa Mandiri, 19(1), 01-09. https://doi.org/10.33480/inti.v19i1.5295