K-BEST SELECTION UNTUK MENINGKATKAN KINERJA ARTIFICIAL NEURAL NETWORK DALAM MEMPREDIKSI RANGE HARGA PONSEL

  • M. Rangga Ramadhan Saelan Universitas Nusa Mandiri
  • Agus Subekti Universitas Nusa Mandiri
Keywords: ANN, feature, metrics, phone, prediction

Abstract

Determining the price of a mobile phone that will be released to the market cannot be based on assumptions alone. This problem can be overcome by utilizing machine learning. In this study, what is predicted is not the exact price, but rather the price range of a cellphone based on the specifications that are its attributes. In machine learning, the Deep Learning ANN model will be used to predict the price range of a mobile phone. To understand the relationship between features and labels, the Univariate feature selection method SelectKBest is used which will calculate the correlation value between features and labels. In this study, the best performance was obtained from the ANN model with feature selection and hyperparameter tuning, the evaluation of performance metrics obtained the highest accuracy of 97.5%. Experiments were conducted by building several models to compare until there was one model that performed well in processing training and validation data. Model evaluation is presented using confusion metrics with various types of performance metrics: accuracy, precision, recall and f1-score. This study also aims to evaluate the effectiveness of the SelectKBest feature selection method in improving model accuracy and testing various hyperparameter configurations to obtain the best performance.

Downloads

Download data is not yet available.

References

Abdolrasol, M. G., Hussain, S. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., ... & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics, 10(21), 2689.

Ardiansyah, G. R., Musayyanah, M., Aqvirandy, W., Farady, M. D., Cahya, M. N., & Hadiono, T. (2023). Deteksi kanker payudara menggunakan artificial neurol network pada deep learning. INFOTECH: Jurnal Informatika & Teknologi, 4(2), 259-269.

Arisusanto, A., Suarna, N., & Dwilestari, G. (2023). Analisa Klasifikasi Data Harga Handphone Menggunakan Algoritma Random Forest Dengan Optimize Parameter Grid. Jurnal Teknologi Ilmu Komputer, 1(2), 43–47.

Aryandi, J., & Onsardi, O. (2020). Pengaruh Kualitas Pelayanan Dan Lokasi Terhadap Keputusan Pembelian Konsumen Pada Cafe Wareg Bengkulu. Jurnal Manajemen Modal Insani Dan Bisnis (Jmmib), 1(1), 117-127.

Celsia, F. K., & Sandag, G. A. (2021). Implementation of Deep Learning on Number Recognition in Sign Language. SISFOTENIKA, 11(2), 124.

Dwiasnati, S., & Devianto, Y. (2021). Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir. SISFOTEK, 5, 202–207.

Güvenç, E., Çetin, G., & Koçak, H. (2021). Comparison of KNN and DNN classifiers performance in predicting mobile phone price ranges. Advances in Artificial Intelligence Research, 1(1), 19-28.

Kirana, I. O., Nasution, Z. M., & Wanto, A. (2020). Proyeksi Indeks Pembangunan Manusia Di Indonesia Menggunakan Metode Statistical Parabolic Dalam Menyongsong Revolusi Industri 4.0. Jurnal Pendidikan Teknologi Dan Kejuruan, 16(2), 202.

Lanini, D. B., Rahmi, S. U., & Siddiq, M. F. (2023). Klasifikasi Harga Ponsel dengan Feature Selection Menggunakan Metode Machine Learning. Konferensi Nasional Ilmu Komputer (KONIK), 49–53.

Mahesh, B. (2020). Machine Learning Algorithms-A Review. International Journal of Science and Research (IJSR), 9(1), 381–386.

Nurmala, E., & Saputro, E. P. (2024). Pengaruh Kualitas Produk, Harga, dan Citra Merek terhadap Niat Beli Handphone Samsung. Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, 6(3), 3733–3743.

Safrezi Fitra. (2022, June 5). Berapa Jumlah Pengguna Smartphone Dunia. Katadata. https://databoks.katadata.co.id/datapublish/2020/01/20/berapa-jumlah-pengguna-smartphone-dunia#:~:text=Pada%202019%2C%20setidaknya%20terdapat%203%2C2%20miliar%20pengguna%2C%20naik,Tiongkok%20menjadi%20negara%20dengan%20jumlah%20pengguna%20smartphone%20terbesar.

Satriawan, N. (2020). Pengertian Metode Penelitian dan Jenis-jenis Metode Penelitian. Ranah Research. Retrieved from https://ranahresearch.com/metode-penelitian-dan-jenis-metode-penelitian/#google_vignette

Sutarsih, T., & Maharani, K. (2022). statistik telekomunikasi indonesia 2022. BPS-Statistics Indonesia , 5–5.

Ulfah, Y., & Suryantoro, A. (2021). Evaluasi Pembelajaran di Masa Pandemi Covid-19 terhadap Nilai Pretest dan Posttest IPA Kelas IX. A SMP Negeri Purworejo Lampung Tengah. Al Jahiz: Journal of Biology Education Research, 2(1), 28-35.

Usmayadi, F., & Khaerus Syahidi, K. (2021). Penerapan Pembelajaran Fisika dengan Pendekatan Saintific Approach Berbasis Lingkungan Sekitar terhadap Prestasi Belajar Siswa. LAMBDA: Jurnal Ilmiah Pendidikan MIPA Dan Aplikasinya, 1(1), 1-6.

Published
2024-07-03
How to Cite
Saelan, M. R., & Subekti, A. (2024). K-BEST SELECTION UNTUK MENINGKATKAN KINERJA ARTIFICIAL NEURAL NETWORK DALAM MEMPREDIKSI RANGE HARGA PONSEL. INTI Nusa Mandiri, 19(1), 10-16. https://doi.org/10.33480/inti.v19i1.5554