PERBANDINGAN PENERAPAN ALGORITMA DEEP LEARNING DALAM PREDIKSI HARGA EMAS
Abstract
Digital investment is trending because advancements in information technology make access easy through smartphones. Various digital investment instruments attract much interest from the public. Post COVID-19 pandemic, the economic impact of the pandemic is still felt until the end of 2022, requiring people to be smart in managing their finances. Gold investment is considered profitable due to its high value and tendency to increase, unlike the fluctuating stocks. Although easily accessible, investments carry risks, so investors must have sufficient knowledge to maximize profits. This research aims to predict gold prices using several deep learning models, namely Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). The dataset used was taken from the Kaggle website, which includes historical gold price data. In this research, various deep learning models were applied and evaluated to determine the best model for predicting gold prices. The results show that the CNN model with Adam optimization and Mean Squared Error (MSE) loss function provides the best performance. The CNN model achieved the lowest Mean Absolute Error (MAE) of 0.004848717761305338, the lowest MSE of 4.3451079619612133, and the lowest Root Mean Squared Error (RMSE) of 0.006591743291392053. These results indicate that the CNN model is more effective in predicting gold prices compared to the ANN, RNN, and LSTM models on the used dataset.
Downloads
References
Ahzar, F. A., Qurniawati, R. S., & Nurohman, Y. A. (2023). Investasi Digital: Faktor Penentu dalam Keputusan Investasi. Jurnal Ilmiah Infokam, 19(1), 23–33.
Akbar, J. (2020). Emas yang Semakin Berkilau di Masa Pandemi Virus Corona. Kompas.Com. https://www.kompas.com/tren/read/2020/07/29/070300865/emas-yang-semakin-berkilau-di-masa-pandemi-virus-corona?page=all
Andriyawan, I., Asmarajati, D., & Suwondo, A. (2023). Sistem Pendukung Keputusan Pemilihan Instrumen Investasi Menggunakan Metode Simple Multi Attribute Rating Technique (SMART). Biner : Jurnal Ilmiah Informatika Dan Komputer, 2(1), 66–75.
Azmi, U., Hadi, Z. N., & Soraya, S. (2020). ARDL Method: Forecasting Data Curah Hujan Harian NTB. Jurnal Varian, 3(2), 73–82.
Binekar, E. B., Raghuvanshi, A., Maindola, P., Bagra, M., Pradhan, N. R., & Khan, T. (2024). Robust and Predictive Deep Neural Networks for Stock Price Forecasting. 2024 3rd International Conference for Innovation in Technology (INOCON).
Demirel, U., Cam, H., & Unlu, R. (2021). Predicting stock prices using machine learning methods and deep learning algorithms: The sample of the istanbul stock exchange. Gazi University Journal of Science, 34(1), 63–82.
Fadillah, F., Wibowo, S. A., Budiman, G., Elektro, F. T., & Telkom, U. (2020). Aplikasi Berbasis Android Menggunakan Metode Support Vector Regression Design and Implementation of Stock Price Prediction in Android-. 7(2), 3869–3876.
Fawaz, H. I. (2020). Deep learning for time series classification. arXiv preprint arXiv:2010.00567.
Fikri, H. A. (2023). Prediksi Harga Emas Dengan Algoritma Backpropagation. Jurnal Sains Komputer & Informatika (J-SAKTI), 7(1), 182–189.
Handayani, S., Malano, T., & Toresa, D. (2022). Convolutional Neural Network–Long Short Term Memory Untuk Prediksi Harga Emas Indonesia. Indonesian Journal of Computer Science, 11(3).
Liu, Y., Lu, J., Yang, J., & Mao, F. (2020). Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Mathematical Biosciences and Engineering, 17(6), 7819–7837.
Nadir, R. A., & Sukmana, R. N. (2023). Sistem Prediksi Harga Emas Berdasarkan Data Time Series Menggunakan Metode Artificial Neural Network (ANN). Digital Transformation Technology, 3(2), 426-437.
Mohtasham Khani, M., Vahidnia, S., & Abbasi, A. (2021). A Deep Learning-Based Method for Forecasting Gold Price with Respect to Pandemics. SN Computer Science, 2(4), 1–12.
Nurcahya, & Susilawati. (2021). Sistem Penunjang Keputusan Pemilihan Produk Investasi Reksa Dana Syariah Menggunakan Metode SMART dan SAW Decision Support System for Sharia Mutual Fund Investment Product Selection Using the SMART and SAW Methods. Jurnal Informatika, 4, 125–131.
Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). Journal of Hydrology, 588(May), 125033.
Pangestu, C., Shaufiah, S., & Wijaya, R. (2024). X Spotify Cares Clustering Analysis using K-Means and K-Medoids. Jurnal Media Informatika Budidarma, 8(1), 497–507.
Pipin, S. J., Purba, R., & Kurniawan, H. (2023). Prediksi Saham Menggunakan Recurrent Neural Network (RNN-LSTM) dengan Optimasi Adaptive Moment Estimation. Journal of Computer System and Informatics (JoSYC), 4(4), 806–815.
Sudriyanto, S., Syahro, F., & Fitriani, N. (2023). Perbandingan Performa Model Machine Learning Support Vector Machine, Neural Network, Dan K-Nearest Neighbors Dalam Prediksi Harga Saham. Jurnal Advanced Research Informatika, 2(1), 13–21.
Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury, F. M., & Qin, A. K. (2022). A Survey on Modern Deep Neural Network for Traffic Prediction: Trends, Methods and Challenges. IEEE Transactions on Knowledge and Data Engineering, 34(4), 1544–1561.
Tholib, A., Agusmawati, N. K., & Khoiriyah, F. (2023). Prediksi Harga Emas Menggunakan Metode Lstm Dan Gru. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3), 620–627.
Zhang, Y., Chu, G., & Shen, D. (2021). The role of investor attention in predicting stock prices: The long short-term memory networks perspective. Finance Research Letters, 38(January), 101484.
Copyright (c) 2024 Muhammad Fahmi Julianto, Muhammad Iqbal, Wahyutama Fitri Hidayat, Yesni Malau
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.