PENERAPAN HYPERPARAMETER MACHINE LEARNING DALAM PREDIKSI GAGAL PINJAM

  • Dinar Ismunandar Universitas Bina Sarana Informatika
  • Muhammad Rifqi Firdaus Universitas Bina Sarana Informatika
  • Yuris Alkhalifi Universitas Bina Sarana Informatika
Keywords: gridsearchCV, hyperparameters, loan default prediction, machine learning

Abstract

Loans or credit are one of the key factors in advancing the economy. One of them is encouraging business expansion which will have a direct impact on a country's economic growth. Banks and other financing institutions must be able to evaluate the borrower's ability to pay their debts based on the inherent risks to reduce the possibility of default. To this end, machine learning (ML) has emerged as a revolutionary tool in using advanced prediction methods to examine historical data based on customer behavior. This research investigates the application of ML in predicting loan outcomes by optimizing parameters in the Machine Learning algorithm. The ML algorithms examined in this research are Logistic Regression (LR), K-Nearest Neighbor (KNN), Random Forest (RF), Decision Tree (DT), and XGBoost (XGB). Meanwhile, the technique used in hyperparameter tuning is Grid Search Cross Validation (CV). The results show that the algorithm's performance is more optimal than before, it can be seen that the LR algorithm experienced an increase in accuracy of 5%, KNN by 4%, RF by 3%, DT by 3%, and XGB by 2%. By including a default dataset based on customer behavior and optimized algorithm parameters, apart from being able to answer the alignment in previous literature in providing a deeper understanding of loan estimation, this research can also provide an understanding that hyperparameter techniques are worth trying to improve the performance of ML algorithms. So, it will be easier for financing institutions to determine the right loan scenario.

Downloads

Download data is not yet available.

References

Alifah, R. N., Najib, M. K., Nurdiati, S., Sari, A. P., Herlambang, K., Ginting, D. T. P. B., & Sya’adah, S. N. (2024). Perbandingan Metode Tree Based Classification untuk Masalah Klasifikasi Data Body Mass Index. Indonesian Journal of Mathematics and Natural Sciences, 47(1), 49–65.

Andryan, M. R., Fajri, M., & Sulistyowati, N. (2022). Komparasi Kinerja Algoritma Xgboost Dan Algoritma Support Vector Machine (Svm) Untuk Diagnosis Penyakit Kanker Payudara. JIKO (Jurnal Informatika Dan Komputer), 6(1), 1–5.

Azhari, M., Maulana, H., & Riza, F. (2024). Data Mining Dalam Analisis Faktor Drop Out Mahasiswa Menerapkan Algoritma Decision Tree. Jurnal Media Informatika Budidarma, 8(2), 1209–1217.

Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications, 44(9), 875–886.

Darmawan, Z. M. E., & Dianta, A. F. (2023). Implementasi optimasi hyperparameter GridSearchCV pada sistem prediksi serangan jantung menggunakan SVM. Teknologi: Jurnal Ilmiah Sistem Informasi, 13(1), 8–15.

Gunawan, M. I., Sugiarto, D., & Mardianto, I. (2020). Peningkatan Kinerja Akurasi prediksi penyakit diabetes mellitus menggunakan metode grid Seacrh Pada algoritma logistic regression. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 6(3), 280–284.

Harisanti, N. N., Meliala, M. E. B., & Oktafia, R. (2024). Analisis Pembiayaan Perbankan (Studi Kasus) Pada Bank Syariah PT. Bank Muamalat Indonesia. Jurnal Rumpun Manajemen Dan Ekonomi, 1(1), 52–63.

Hasibuan, F. H. (2024). Klasifikasi Data Material Pending Pada Perusahaan dengan Metode SVM. Innovative: Journal Of Social Science Research, 4(1), 5080–5090.

Jayidan, Z., Siregar, A. M., Faisal, S., & Hikmayanti, H. (2024). Improving Heart Disease Prediction Accuracy Using Principal Component Analysis (PCA) In Machine Learning Algorithms. Jurnal Teknik Informatika (Jutif), 5(3), 821–830.

Muhamad, N. (2023, August 23). Gen Z dan Milenial Jadi Penyumbang Kredit Macet Pinjol Terbesar pada Juni 2023. Katadata.Co.Id.

Oktavia, I., & Isnain, A. R. (2024). Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes. Jurnal Media Informatika Budidarma, 8(2), 777–787.

Ramadhon, R. N., Ogi, A., Agung, A. P., Putra, R., Febrihartina, S. S., & Firdaus, U. (2024). Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank. Karimah Tauhid, 3(2), 1860–1874.

Ridwan, R., Hermaliani, E. H., & Ernawati, M. (2024). Penerapan: Penerapan Metode SMOTE Untuk Mengatasi Imbalanced Data Pada Klasifikasi Ujaran Kebencian. Computer Science (CO-SCIENCE), 4(1), 80–88.

Rusman, J., Haryati, B. Z., & Michael, A. (2023). Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi. J-Icon: Jurnal Komputer Dan Informatika, 11(2), 195–202.

Santosa, A. (2023, July 8). Siaran Pers: Pembiayaan UMKM Lewat Pinjaman Online terus Berkembang, Pinjaman Masyarakat masih Terkendali. Ojk.Go.Id.

Saputra, M., Sidabuke, J. P., Sinulingga, R. P., & Tamba, R. B. (2023). Analisis Metode Algoritma K-Nearest Neighbor (KNN) Dan Naive Bayes Untuk Klasifikasi Diabetes Mellitus. Jurnal Tekinkom (Teknik Informasi Dan Komputer), 6(2), 723–729.

Sumantri, G., Novianto, M. D., & Prihastuti, P. P. (2023). Implementasi Fuzzy C-Means dalam Pengelompokan Provinsi di Indonesia untuk Pemerataan Kualitas Pendidikan. Prosiding Seminar Pendidikan Matematika Dan Matematika, 8.

Surana, S. (2021). Loan Prediction Based on Customer Behavior. Kaggle.Com.

Ulfa, M., & Mulyadi, M. (2020). Analisis dampak kredit usaha rakyat pada sektor Usaha Mikro terhadap penanggulangan kemiskinan di Kota Makassar. Aspirasi: Jurnal Masalah-Masalah Sosial, 11(1), 17–28.

Yulianti, S. E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 21–26.

Zelvia, R. (2024). Peran Pembiayaan Kredit Usaha Rakyat (KUR) Terhadap Perkembangan Umkm (Studi Pada PT. Bank Syariah Indonesia, Tbk Kantor Cabang Kalianda). Ekonodinamika: Jurnal Ekonomi Dinamis, 6(1).

Zöller, M.-A., & Huber, M. F. (2021). Benchmark and survey of automated machine learning frameworks. Journal of Artificial Intelligence Research, 70, 409–472.

Zuama, R. A., Ichsan, N., Pohan, A. B., Azis, M. S., & Lase, M. (2024). An implementation of machine learning on loan default prediction based on customer behavior. Jurnal Info Sains: Informatika Dan Sains, 14(01), 157–164.

Published
2024-08-01
How to Cite
Ismunandar, D., Firdaus, M., & Alkhalifi, Y. (2024). PENERAPAN HYPERPARAMETER MACHINE LEARNING DALAM PREDIKSI GAGAL PINJAM. INTI Nusa Mandiri, 19(1), 62-70. https://doi.org/10.33480/inti.v19i1.5612