PREDIKSI HARGA PONSEL BERDASARKAN SPESIFIKASINYA MENGGUNAKAN ALGORITMA LINEAR REGRESSION

Authors

  • Muhammad Irsyad Universitas Bina Sarana Informatika
  • Silvy Amelia Universitas Bina Sarana Informatika
  • Yahya Mara Ardi Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.33480/inti.v19i2.6292

Keywords:

cross validation, linear regression, RMSE

Abstract

The rapid advancement of mobile technology tools day by day benefits thousands of smartphone retailers by offering various innovations. This study aims to predict smartphone prices based on their technical features using the linear regression method. The dataset used includes various technical attributes from different smartphone models. The research process involves a data preprocessing stage to clean missing or invalid values and feature transformation to prepare the data for the linear regression process. Subsequently, a linear regression model is developed and tested using cross-validation techniques to evaluate its performance. The metric used to measure the model's prediction accuracy or error is RMSE. The experimental results show an RMSE value of 170.692. The target variable, which is the smartphone price, ranges from the lowest price of 614 to the highest price of 4,361. The RMSE value obtained in this study can be considered fairly good, as it is less than 10% of the actual value or average price. Variables such as RAM, storage size, camera, and processor type significantly influence smartphone prices. However, other factors such as brand and design may also have an impact, albeit to a lesser extent. This study confirms that linear regression can be effectively used to predict smartphone prices based on technical specifications. The findings of this research can assist companies in developing pricing strategies based on smartphone specifications. Additionally, it can help determine which products are suitable for market introduction.

Downloads

Download data is not yet available.

References

Fadillah A.R, Fauzan M.K, & Fathonah N.S. (2024). JIP (Jurnal Informatika Polinema). JIP (Jurnal Informatika Polinema), 10. Retrieved from https://jurnal.polinema.ac.id/index.php/jip/article/view/5700/3945

Hamdanah, H. F., & Fitrianah, D. (2021). Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 10(1), 23. https://doi.org/10.23887/janapati.v10i1.31035

Husdi, H., & Dalai, H. (2023). Penerapan Metode Regresi Linear Untuk Prediksi Jumlah Bahan Baku Produksi Selai Bilfagi. Jurnal Informatika, 10(2), 129–135. https://doi.org/10.31294/inf.v10i2.14129

Marlius, D., & Darma, K. P. K. (2023). PENGARUH EKUITAS MEREK (BRAND EQUITY) DAN HARGA TERHADAP KEPUTUSAN PEMBELIAN PRODUK HANDPHONE MEREK OPPO PADA TOKO FAIQAH PONSEL DI UJUNG AIR, KECAMATAN SUTERA, KABUPATEN PESISIR SELATAN, SUMATERA BARAT. JURNAL ECONOMINA, 2, 15–27. Retrieved from https://ejournal.45mataram.ac.id/index.php/economina/article/view/234/230

Muhayat, T., Jayanta, & Chamidah, N. (2022). Prediksi harga Smartphone menggunakan Algoritma Multiple Linear Regression. In Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), e-ISSN (Vol. 296, pp. 506-525).

Nafi’iyah, N., & Rakhmawati, E. (2021). Analisis Regresi Linear Dan Moving Average Dalam Memprediksi Data Penjualan Supermarket (Vol. 12). https://doi.org/https://doi.org/10.51903/jtikp.v12i1.230

Roflin, E., Priyana, & Liberty, iche andriyani. (2022). Kupas Tuntas Analisis Regresi Tunggal dan Ganda. Retrieved from https://www.google.co.id/books/edition/Kupas_Tuntas_Analisis_Regresi_Tunggal_da/5Dt2EAAAQBAJ?hl=en&gbpv=1&dq=normalitas+histogram&pg=PA86&printsec=frontcover%0Ahttps://www.google.co.id/books/edition/Kupas_Tuntas_Analisis_Regresi_Tunggal_da/5Dt2EAAAQBAJ?hl

Romadloni, P. L., Kusuma, B. A., & Baihaqi, W. M. (2022). jurnal JATI. JATI (Jurnal Mahasiswa Teknik Informatika), 6, 623–628. https://doi.org/https://doi.org/10.36040/jati.v6i2.5238

Setyoningrum, N. R., & Rahimma, P. J. (2022). Implementasi Algoritma Regresi Linear Dalam Sistem Prediksi Pendaftar Mahasiswa Baru Sekolah Tinggi Teknologi Indonesia Tanjungpinang. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (SNISTEK), (4), 13–18. Retrieved from https://ejournal.upbatam.ac.id/index.php/prosiding/article/view/5200

Telaumbanua, I. (2024). PENGARUH BRAND IMAGE TERHADAP KEPUTUSAN PEMBELIAN SMARTPHONE VIVO (STUDI PADA MAHASISWA FEB UNIRAYA). Jurnal Ilmiah Mahasiswa Nias Selatan, 7, 170–182. Retrieved from file:///D:/mel/jurnal januari 2025/BAP/1205-Article Text-7152-1-10-20241113.pdf

Tholib, A., Hidayat, M. N. F., Supriyono, Wulanningrum, R., & Daniati, E. (2023). Comparison of C4.5 and Naive Bayes for Predicting Student Graduation Using Machine Learning Algorithms. International Journal of Engineering and Computer Science Applications (IJECSA), 2(2), 65–72. https://doi.org/10.30812/ijecsa.v2i2.3364

Tuan, L., & Dao, V. (2021). “Product Development and Pricing Strategy in the Smartphone Industry.” In International Journal of Product Development.

Tuntun, R., Kusrini, & Kusnawi. (2022). Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(4), 2111. https://doi.org/10.30865/mib.v6i4.4681

Zapar, R., Pratama, D., Kaslani, Rohmat, C. L., & Faturrohman. (2024). PENERAPAN MODEL REGRESI LINIER UNTUK PREDIKSI HARGA SAHAM BANK BCA PADA BURSA EFEK INDONESIA. In Jurnal Mahasiswa Teknik Informatika (Vol. 8).

Zebua, L. D. (2022). PENGARUH KUALITAS PELAYANAN TERHADAP MINAT BELI KONSUMEN DI TOKO IMELDA PONSEL TELUKDALAM. Jurnal Ilmiah Mahasiswa Nias Selatan, 5, 15–19. Retrieved from https://jurnal.uniraya.ac.id/index.php/jim/article/view/578/1448

Downloads

Published

2025-02-11

How to Cite

Irsyad, M., Silvy Amelia, & Ardi, Y. M. (2025). PREDIKSI HARGA PONSEL BERDASARKAN SPESIFIKASINYA MENGGUNAKAN ALGORITMA LINEAR REGRESSION. INTI Nusa Mandiri, 19(2), 251–258. https://doi.org/10.33480/inti.v19i2.6292