PENERAPAN JARINGAN SYARAF TIRUAN DENGAN ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI PRODUKSI TANAMAN PADI

Authors

  • Anggi hadi Wijaya Universitas Andalas

DOI:

https://doi.org/10.33480/inti.v20i1.6438

Keywords:

Artificial Neural Networks (ANN), Backpropagation Algorithm, Rice Production

Abstract

Rice is a staple food crop in Indonesia, including in West Sumatra Province, which plays an important role in national food security. This study aims to develop a rice production prediction model using Artificial Neural Networks (ANN) with the Backpropagation algorithm. Historical rice production data from 2006 to 2023 in 19 regencies/cities in West Sumatra Province were used as the data basis. The research methods include data collection from BPS West Sumatra, data preprocessing, prediction process using the Backpropagation algorithm, and accuracy testing of the prediction results. The results show that ANN with the Backpropagation algorithm can predict rice production with an accuracy rate of 82.56% using an architecture with 16 neurons in the input layer, 9 neurons in the hidden layer, and 1 neuron in the output layer. This prediction model is expected to assist farmers and the government in planning optimal rice production, thereby increasing production and the welfare of farmers in West Sumatra Province. Thus, this research provides significant contributions in supporting decision-making in the agricultural sector, particularly in efforts to enhance food security and the welfare of farmers in the region

Downloads

Download data is not yet available.

References

Antares, J. (2021). Artificial neural network dalam mengidentifikasi penyakit stroke menggunakan metode backpropagation (Studi kasus di Klinik Apotik Madya Padang). Djtechno: Jurnal Teknologi Informasi, 1, 6-13. https://doi.org/10.46576/djtechno.v1i1.965

Syaputra, A. E. (2023). Akumulasi metode Monte Carlo dalam memperkirakan tingkat penjualan keripik sanjai. Jurnal Informasi Ekonomi dan Bisnis, 5(1), 209-216. https://doi.org/10.37034/infeb.v5i1.222

Syaputra, A. E., & Eirlangga, Y. S. (2022). Prediksi tingkat kunjungan pasien dengan menggunakan metode Monte Carlo. Jurnal Informasi dan Teknologi, 4(2), 1-5. https://doi.org/10.37034/jidt.v4i2.202

Badan Pusat Statistik. (2018-2023). Luas panen, produksi, dan produktivitas padi menurut kabupaten/kota hasil kerangka sampel area (KSA). Retrieved from https://sumbar.bps.go.id/id/statistics-table/2/Mjc2IzI=/luas-panen--produksi--dan-produktivitas-padi-menurut-kabupaten-kota-hasil-kerangka-sampel-area--ksa-.html

Efrian, Defit, S., & Sumijan. (2022). Prediksi tingkat kebutuhan bandwidth jangka panjang menggunakan metode algoritma backpropagation. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(1), 1-11. https://doi.org/10.47233/jteksis.v4i1.310

Erlin, E., Yunianta, A., Wulandhari, L. A., Desnelita, Y., Nasution, N., & Junadhi, J. (2024). Enhancing rice production prediction in Indonesia using advanced machine learning models. IEEE Access, 12, 68041–68055. https://doi.org/10.1109/ACCESS.2024.3456789

Faisal, M. (2025). Artificial neural network-based forecasting of rice yield. ASSET Journal: Journal of Applied Science, Engineering, Technology, and Education, 7(1), 1–10. https://journal2.upgris.ac.id/index.php/asset/article/view/2019

Herdiyanti, H., Sulistyono, E., & Purwono. (2021). Pertumbuhan dan produksi beberapa varietas padi (Oryza sativa L.) pada berbagai interval irigasi. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 49(2), 129-135. https://doi.org/10.24831/jai.v49i2.36558

Hutabarat, D., Solikhun, M., Fauzan, M., Windarto, A. P., & Rizki, F. (2021). Penerapan algoritma backpropagation dalam memprediksi hasil panen tanaman sayuran. BIOS: Jurnal Teknologi Informasi dan Rekayasa Komputer, 2(1), 1-10. https://doi.org/10.37148/bios.v2i1.18

Jain, A., & Goyal, N. (2023). Stock market prediction techniques: A bibliometric review. Journal of General Management and Research, 10(1), 18-27.

Li, J., Xie, Y., Liu, L., Song, K., & Zhu, B. (2025). Long short-term memory neural network with attention mechanism for rice yield early estimation. Agriculture, 15(3), 231. https://doi.org/10.3390/agriculture15030231

Maiyuriska, R. (2022). Penerapan Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Panen Gabah Padi . Jurnal Informatika Ekonomi Bisnis, 4(1), 28-33. https://doi.org/10.37034/infeb.v4i1.115

Novianti, T., & Agustina, F. (2024). Early warning system modeling for rice supply using backpropagation artificial neural network to manage imported rice. BIO Web of Conferences, 82, 01036. https://doi.org/10.1051/bioconf/20248201036

Sharma, R., Singh, A., & Mittal, M. (2022). Rice yield prediction using hybrid PSACO algorithm based on back-propagation neural network. Journal of Agrometeorology, 24(1), 89–96. https://doi.org/10.54302/agmet.24.1.2022.9

Thoriq, M., Syaputra, A. E., & Eirlangga, Y. S. (2023). Perkiraan kebutuhan air bersih menggunakan metode jaringan syaraf tiruan backpropagation. Jurnal Ilmiah Komputer, 12(1), 45-52. https://ejurnal.umri.ac.id/index.php/JIK/article/view/6142/2670

Downloads

Published

2025-08-21

How to Cite

Wijaya, A. hadi. (2025). PENERAPAN JARINGAN SYARAF TIRUAN DENGAN ALGORITMA BACKPROPAGATION DALAM MEMPREDIKSI PRODUKSI TANAMAN PADI. INTI Nusa Mandiri, 20(1), 92–102. https://doi.org/10.33480/inti.v20i1.6438