IMPLEMENTASI METODE EXTREME MENGGUNAKAN ALGORITMA MACHINE LEARNING UNTUK KLASIFIKASI JENIS FASHION ALAS KAKI
DOI:
https://doi.org/10.33480/inti.v20i1.6860Keywords:
extreme method , footwear fashion classification , machine learning algorithmAbstract
This research explores the application of Extreme Learning Machine (ELM) for classifying types of fashion footwear. The increasing number of e-commerce transactions and the use of visual media in marketing demand an efficient and accurate automated system to identify various types of footwear such as shoes, sandals, and slip-ons. Conventional classification systems often encounter challenges in handling variations in shape, color, and lighting conditions in footwear images. ELM, with its unique approach of assigning random weights in the hidden layer, offers a potential solution to these issues. In this study, a classification system was developed consisting of several stages, including the collection of diverse footwear image data, image preprocessing to improve quality and reduce noise, feature extraction relevant for distinguishing footwear types, and finally, classification using the ELM algorithm. The preprocessing process involved color conversion from RGB to HSV to reduce sensitivity to lighting variations, as well as thresholding to produce binary images. Extracted features included geometric characteristics such as area, perimeter, and aspect ratio. The system’s performance was evaluated using standard metrics such as accuracy, precision, and recall. The results showed an accuracy value of 83.3%. In addition, the model evaluation demonstrated very good results: precision reached 83.3%, recall 83.3%, and F1-Score 91%, indicating that ELM is effective in classifying types of fashion footwear. This study contributes to the development of intelligent, efficient, and accurate classification systems for applications in the fashion industry, while also opening opportunities for further research in optimizing ELM parameters and exploring more representative features
Downloads
References
Aisah, S. N., Dian Candra Rini Novitasari, & Farida, Y. (2023). Perbandingan Metode Extreme Learning Machine (ELM) dan Kernel Extreme Learning Machine (KELM) Pada Klasifikasi Penyakit Cedera Panggul. Jurnal Fourier, 12(2), 69–78. https://doi.org/10.14421/fourier.2023.122.6 9-78
Ali, S. K., & Boughaci, D. (2024). Improving extreme learning machine model using deep learning feature extraction and grey wolf optimizer: Application to image classification. Intelligent Decision Technologies, 18(1), 457–483. https://doi.org/10.3233/IDT-230382
Ali, S., Li, J., Pei, Y., Aslam, M. S., Shaukat, Z., & Azeem, M. (2020). An effective and improved cnn-elm classifier for handwritten digits recognition and classification. Symmetry, 12(10), 1–15. https://doi.org/10.3390/sym12101742
Apalem, R. (2024). Penerapan Metode Extreme Learning Machine (ELM) untuk Memprediksi Hasil Sensor EWS Trafo. Jurnal Teknologi Informasi Dan Komunikasi), 8(1), 2024. https://doi.org/10.35870/jti
Fatmayati, F., Nugraheni, M., Nuraini, R., & Rossi, F. (2023). Classification of Character Types of Wayang Kulit Using Extreme Learning Machine Algorithm. Building of Informatics, Technology and Science (BITS), 5(1). https://doi.org/10.47065/bits.v5i1.3568
Icha Riani, & Rayyan Firdaus. (2024). Implementasi Metode Extreme Programming dalam Sistem Informasi Manajemen Pemesanan Barang Online. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(3), 17–23. https://doi.org/10.62951/bridge.v2i3.94
Idris, M., Saputra, C. F., & Ramadhanu, A. (2024). IMPLEMENTASI METODE EXTREME LEARNING MACHINE UNTUK KLASIFIKASI JENIS MOBIL. In Journal of Science and Social Research (Issue 3). http://jurnal.goretanpena.com/index.php/JSSR
Indhira Utami Paudi, P., & Tanzil Furqon, M. (2020). Implementasi Metode Extreme Learning Machine (ELM) untuk Memprediksi Jumlah Debit Air yang Layak Didistribusi (Studi Kasus: PDAM Kabupaten Gowa Makassar) (Vol. 4, Issue 3). http://j-ptiik.ub.ac.id
Mahardika, F., Merani, S. G., & Suseno, A. T. (2023). Penerapan Metode Extreme Programming pada Perancangan UML Sistem Informasi Penggajian Karyawan. Blend Sains Jurnal Teknik, 2(3), 204–217. https://doi.org/10.56211/blendsains.v2i3.313
Manza, Y., Suhada WD, M., Ndruru, A. F. S., & Rosnelly, R. (2025). Model Machine Learning untuk Klasifikasi Warna Fashion Menggunakan Metode K-Nearest Neighbor. Jurnal Minfo Polgan, 13(2), 2613–2618. https://doi.org/10.33395/jmp.v13i2.14551
Mestika, D., & Syahputra Novelan, M. (2024). Implementasi Sistem Penggajian Pada Klinik Pratama Mawaddah Menggunakan Metode Extreme Programming (XP). In Journal of Science and Social Research: Vol. VII (Issue 3). http://jurnal.goretanpena.com/index.php/JSSR
J., Giorgi, G. L., Soriano, M. C., & Zambrini, R. (2021). Opportunities in Quantum Reservoir Computing and Extreme Learning Machines. Advanced Quantum Technologies, 4(8). https://doi.org/10.1002/qute.202100027
Shuwa, A., Muhammad, A., Mustapha, A. B., & Matemilola, A. O. (2024). Clothing image classification model using regularized multiple convolutional neural networks (RMCNN). Science World Journal, 19(2), 502– 511. https://doi.org/10.4314/swj.v19i2.27
Surantha, N., & Gozali, I. D. (2023). Evaluation of the Improved Extreme Learning Machine for Machine Failure Multiclass Classification. Electronics (Switzerland), 12(16). https://doi.org/10.3390/electronics1216350 1
Triwibowo, M. I., & Sela, I. (n.d.). Implementasi Extreme Learning Machine untuk Pengenalan Jenis Sepatu.
Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81(29), 41611–41660. https://doi.org/10.1007/s11042-021- 11007-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dina Selvia, Sela Ramadani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.