RANCANG BANGUN APLIKASI PREDIKSI TAGIHAN AIR BERBASIS WEB MENGGUNAKAN REGRESI LINIER BERGANDA
DOI:
https://doi.org/10.33480/inti.v20i1.6899Keywords:
MSE, Multiple Linear Regression, R², Water Bill Prediction, Web ApplicationAbstract
The management of water billing in the PAMSIMAS service in Sidobandung Village is still conducted manually and does not provide early information regarding bill estimates, often resulting in delayed payments by customers. This study aims to design and develop a web-based water bill prediction application using the Multiple Linear Regression (MLR) method, capable of delivering fast, accurate, and accessible billing estimates. The dataset used in this research consists of historical monthly water usage and billing data from January to December 2024, with a structure comprising 231 rows of customer data and 30 feature columns. The research stages include data preprocessing, model training using MLR, integration of the model into a web-based system, and evaluation of prediction results using the Mean Squared Error (MSE) and R-squared ( ) metrics. Evaluation results showed that the model achieved an MSE of 18,882 and an of 0,8, indicating a fairly good and stable prediction performance. The system allows customers to log in, view predicted water bills for the 13th month based on previous data, and access graphical visualizations of usage and cost trends. Meanwhile, the admin can efficiently manage customer data through a dedicated dashboard. With the implementation of this application, the management and prediction process of water billing becomes more transparent, efficient, and helps customers in planning their water expenses more precisely .
Downloads
References
Amansyah, I., Indra, J., Nurlaelasari, E., & Juwita, A. R. (2024). Prediksi Penjualan Kendaraan Menggunakan Regresi Linear : Studi Kasus pada Industri Otomotif di Indonesia. INNOVATIVE: Journal Of Social Science Research Volume, 4(4), 1199–1216. https://j-innovative.org/index.php/Innovative%0APrediksi
Deni, D. R., Barata, M. A., & Sahri. (2023). Forecasting Metode Single Exponential Smoothing Dalam Meramalkan Penjualan Barang. Jurnal Informatika Polinema, 9(4), 435–444. https://doi.org/10.33795/jip.v9i4.1405
Diah Retnowati, Eli Susanti, Ratna Puji Astuti, Sodik Dwi Purnomo, Herwiek Diyah Lestari, H. (2023). Analisis Permintaan Air Perusahaan Daerah Air Minum (Studi Empiris Pada PDAM Tirta Satria di Kota Purwokerto). JIEP: Jurnal Ilmu Ekonomi Dan Pembangunan, 6(2), 1195–1206.
Dimas Dwi Al Hakim, I. M. S. (2023). Analisis Permintaan Rumah Tangga Terhadap Air Pdam Di Kelurahan Kedungdoro Kota Surabaya. Jurnal Ekonomi & Bisnis, 8(2), 129–138.
Hariyanto, M., Kholiq, M., Yani, A., & Narti. (2025). PREDIKSI HARGA PONSEL BERDASARKAN SPESIFIKASINYA MENGGUNAKAN ALGORITMA LINEAR REGRESSION. Inti Nusa Mandiri, 14(2), 133–138.
Jafar, R., Awad, A., Hatem, I., Jafar, K., Awad, E., & Shahrour, I. (2023). Multiple Linear Regression and Machine Learning for Predicting the Drinking Water Quality Index in Al-Seine Lake. Smart Cities, 6(5), 2807–2827. https://doi.org/10.3390/smartcities6050126
Jannah, H. N., Purwadi, O. T., & ... (2021). Potensi Penyediaan Air Bersih Berkelanjutan melalui Pemanenan Air Hujan (Studi Kasus Pulau Pasaran Kecamatan Teluk Betung Timur Kota Bandarlampung). Jurnal Rekayasa Sipil Dan …, 9(4), 809–818. http://journal.eng.unila.ac.id/index.php/jrsdd/article/view/2166
Nandita Afrilia S, Fathia Frazna Az-Zahra, P. (2024). Prediksi hasil panen wortel menggunakan algoritma regresi linear berganda. JATI (Jurnal Mahasiswa Teknik Informatika), 8(5), 10255–10262.
Nuris, N. (2024). Analisis Prediksi Harga Rumah Pada Machine Learning Metode Regresi Linear. Explore, 14(2), 108–112. https://doi.org/10.35200/ex.v14i2.123
P Fernandes, A. C., R Fonseca, A., Pacheco, F. A. L., & Sanches Fernandes, L. F. (2023). Water quality predictions through linear regression - A brute force algorithm approach. MethodsX, 10(March), 102153. https://doi.org/10.1016/j.mex.2023.102153
Pii, I., Suarna, N., & Rahaningsih, N. (2023). Penerapan Data Mining Pada Penjualan Produk Pakaian Dameyra Fashion Menggunakan Metode K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 423–430. https://doi.org/10.36040/jati.v7i1.6336
Prasetyo, A., Salahuddin, S., & Amirullah, A. (2021). Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda. Jurnal Infomedia, 6(2), 76. https://doi.org/10.30811/jim.v6i2.2343
Salma Rahima Ahmad, H. S. D. (2023). Penerapan Regresi Linier Berganda dalam Penentuan Dosis Koagulan Optimal pada Instalasi Pengolahan Air Kaligarang III ( Studi Kasus : Perumda Air Minum Tirta Moedal Kota Semarang ). Fakultas Teknik, Universitas Diponegoro, 3–4.
Santoso, L., & Priyadi. (2024). Mengoptimalkan Proses Pembersihan Data dalam Analisis Big Data Menggunakan Pipeline Berbasis AI. Jurnal Elektronika Dan Komputer, 17(2), 657–666.
Yulian Pamuji, F., Ahmad Rofiqul Muslikh, Rizza Muhammad Arief, & Delviana Muti. (2024). Komparasi Metode Mean dan KNN Imputation dalam Mengatasi Missing Value pada Dataset Kecil. Jurnal Informatika Polinema, 10(2), 257–264. https://doi.org/10.33795/jip.v10i2.5031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arum Fatmawati Arum , Afril Efan Pajri, Sahri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.