CLASSIFICATION OF THE PROSPECTS FOR CITY TREES LIFE EXPECTANCY USING NAIVE BAYES METHOD
Abstract
Besides the city is a large and extensive residential area. as a center for the activities of its citizens, both from economic, cultural, and development activities. Development in the city leads to the physical development of the city with the many facilities and infrastructure in the city, making activities in the city cause some pollution problems. To overcome this problem, the government often creates green open space in the middle of the city. Planting shade trees will help to balance the problem of pollution due to development. Trees can reduce temperatures, in addition to absorbing air and climate pollution. trees can help save energy. Naive Bayes is a classification with probability and statistical methods, namely predicting future opportunities based on experience based on the assumption of simplification that attribute values are conditionally free if given an output value. Data processing with Naive Bayes produces a Precision value of 0.840%, a recall value of 0.848%, and an AUC of 0.873%. These results indicate that the results are included in the excellent category.
Downloads
References
L. M. P. Gumaja, M. Mardhiansyah, and E. Sribudiani, “EVALUASI KESEHATAN POHON PADA JALUR HIJAU JALAN ARIFIN ACHMAD KOTA PEKANBARU,” J. Ilmu-Ilmu Kehutan., 2019.
R. Hijauku, “9 Manfaat Pohon Di Perkotaan,” 2017. https://hijauku.com/2017/02/22/9-manfaat-pohon-di-perkotaan/.
A. Junaedi, “GROWTH PERFORMANCE OF THREE NATIVE TREE SPECIES FOR PULPWOOD PLANTATION IN DRAINED PEATLAND OF PELALAWAN DISTRICT, RIAU,” Indones. J. For. Res., 2018, DOI: 10.20886/ijfr.2018.5.2.119-132.
“IKLIM MIKRO DAN KEBUTUHAN RUANG TERBUKA HIJAU DI KOTA SEMARANG (The Micro Climate and The Need of Green Open Space for The City of Semarang),” J. Mns. dan Lingkung., 2008, doi: 10.22146/jml.18685.
S. Hasanbahri, D. Marsono, S. Hardiwinoto, and R. Sadono, “Serangan benalu pada beberapa kelas umur tanaman jati di wilayah hutan BKPH Begal, KPH Ngawi, Jawa Timur,” Mns. dan Lingkung., 2014.
A. Subiakto, “Teknologi Perbanyakan Vegetatif Bibit Pohon Hutan Secara Masal,” in Prosidding Ekspose Hasil-Hasil Penelitian, 2007.
M. Mawazin and H. Suhaendi, “Pengaruh jarak tanam terhadap pertumbuhan diameter,” J. Penelit. Hutan dan Konserv. Alam, vol. 5, no. 4, pp. 381–388, 2008, doi: 10.20886/jphka.2008.5.4.381-388.
Y. Suranto, A. P. Tibertius, D. Marsono, and G. S. Johanes Pramana, “Pengaruh Umur Pohon, Bonita dan Posisi Aksial Batang Terhadap Struktur Makroskopis dan Kualitas Kayu Jati Sebagai Bahan Furnitur,” J. Mns. dan Lingkung., vol. 22, no. 1, pp. 84–93, 2015.
Karmilasanti and Abdurachman, “Struktur Tegakan Pada Umur 1,2,3 dan 4 Tahun Pada Hutan Bekas Tebangan Di Areal TPTJ PT. Intracawood Manufacturing, Kalimantan Utara,” in Prosiding Seminar Peningkatan Ekonomi Masyarakat Melalui Integrasi Hasil Riset Aplikatif, 2018.
S. Rahmadhani, S. B. Yuwono, A. Setiawan, and I. S. Banuwa, “PEMILIHAN JENIS POHON MENJERAP DEBU DI MEDIAN JALAN KOTA BANDAR LAMPUNG,” J. Belantara, 2019, doi: 10.29303/jbl.v2i2.181.
D. Pertiwi, R. Safe’i, H. Kaskoyo, and I. Indriyanto, “IDENTIFIKASI TIPE KERUSAKAN POHON MENGGUNAKAN METODE FOREST HEALTH MONITORING (FHM),” PERENNIAL, 2019, doi: 10.24259/perennial.v15i1.6033.
P. A. Widyarini and Y. B. S. Heddy, “Penilaian Estetika dan Fungsional Pohon Tepi Jalan Berdasarkan Persepsi Pengguna Jalan ( Studi Kasus : Jl Ijen dan Jl Veteran Kota Malang ) Aesthetic and Functional Assessment of Roadside Trees Based on Street User Perceptions,” Produksi Tanam., vol. 6, no. 9, pp. 2320–2327, 2018.
A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” Creat. Inf. Technol. J., 2015.
N. Nurajijah and D. Riana, “Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah,” J. Teknol. dan Sist. Komput., 2019, doi: 10.14710/jtsiskom.7.2.2019.77-82.
E. S. Palupi, S. M. Pahlevi, U. Bina, S. Informatika, P. Magister, and I. Komputer, “Inti nusa mandiri,” Inti Nusa Mandiri, vol. 14, no. 2, pp. 133–138, 2020, doi: https://doi.org/10.33480/inti.v14i2.1178 VOL.
I. A. Medha and D. P. Sari, “IMPLEMENTASI FUZZY DECISION TREE UNTUK PREDIKSI PENYAKIT LIVER PADA DATASET ILPD (INDIAN LIVER PATIENT DATASET),” POSITIF J. Sist. dan Teknol. Inf., 2019, doi: 10.31961/positif.v5i2.773.
S. Angra and S. Ahuja, “Implementation of data mining algorithms on student’s data using rapid miner,” in Proceedings of the 2017 International Conference On Big Data Analytics and Computational Intelligence, ICBDACI 2017, 2017, doi: 10.1109/ICBDACI.2017.8070869.
Y. Angraini, S. Fauziah, and J. L. Putra, “ANALISIS KINERJA ALGORITMA C4.5 DAN NAÏVE BAYES DALAM MEMPREDIKSI KEBERHASILAN SEKOLAH MENGHADAPI UN,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), 2020, doi: 10.33480/jitk.v5i2.1233.
T. P. Wicaksono, N. Hidayat, and B. Rahayudi, “Implementasi Metode Naive Bayes Pada Diagnosis Penyakit Lambung,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2019.
S. Mujilahwati, F. Widyahastuti, and N. Nafi’iyah, “Performansi Klasifikasi Kelas Siswa Menggunakan Naïve Bayes Dan Decision Tree,” Semin. Nas. Unisla, pp. 155–158, 2018.
G. Australia, “City of Prospect Tree Species in Reserves,” 2016, 2016. https://data.sa.gov.au/data/dataset/city-of-prospect-tree-species-in-reserves.