CLASSIFICATION OF LIVER DISEASE BY APPLYING RANDOM FOREST ALGORITHM AND BACKWARD ELIMINATION
DOI:
https://doi.org/10.33480/jitk.v6i1.1424Keywords:
Classification, Random Forest, Backward Elimination, ILDP, Split Validation, Liver DiseaseAbstract
Cancer is a type of disease that is not realized by most people because most people associated with this disease lack understanding of cancer itself and are doing early detection of cancer, due to the majority of cancers found at an advanced stage and difficult to overcome to facilitate large expenditure to help cancer. Early detection of liver or liver cancer is very important to overcome the very high risk of death caused by liver or liver cancer. This study aims to help classify liver or liver cancer based on data from routine examination results of patients summarized in the Indian Liver Data Patient (ILDP) dataset. The method used in the classification process in this research is backward elimination modeling for testing optimization and Random Forest algorithm and split validation to validate the model. The results of this study yielded 76.00% and value of AUC 0.758 results. These results indicate that the results of this study are good enough to help classify breast cancer