IMPROVING STUNTING CLASSIFICATION PERFORMANCE USING COMBINATION SMOTE TECHNIQUE AND ARTIFICIAL NEURAL NETWORK ALGORITHM

  • Wiga Maulana Baihaqi Universitas Amikom Purwokerto
  • Ida Nur Laela Universitas Amikom Purwokerto
  • Darso Darso Universitas Amikom Purwokerto
Keywords: artificial neural network, classification, deep learning, oversampling, stunting

Abstract

Child development is at the core of the nation's future. However, there are still serious problems that hinder optimal child growth, one of which is stunting. Stunting is a condition that has become a global concern in the context of public health and development.  The use of deep learning algorithms has great potential to overcome the problem of stunting classification. The ratio of stunting handling is still a problem due to imbalance data. Classification algorithms such as ANN will experience a decrease in performance when faced with unbalanced classes, this makes it difficult to take action for early diagnosis of stunting. Synthetic Minority Oversampling Technique (SMOTE) is used to balance the failure data in diagnosis.  The results showed that the combination of the SMOTE oversampling technique can improve the ability of the ANN algorithm model to accurately classify stunted or minority populations. The accuracy, precision, recall, and F1-Score values of this study are 0.90, 0.85, and 0.95, respectively. The results of (MCC) obtained a value of 0.73, and (G-Mean) of 0.86 before applying SMOTE and the results after applying SMOTE MCC of 0.84 and G-Mean of 0.92. This indicates that the minority group, namely stunted toddlers, can be predicted well.  The implementation of the combination of SMOTE and ANN has proven successful in classifying imbalance stunting data, so this research can be used as a reference for future research to handle unbalanced data.

Downloads

Download data is not yet available.

References

M. Trisiswati, D. Mardhiyah, dan S. Maulidya Sari, “Hubungan Riwayat Bblr (Berat Badan Lahir Rendah) Dengan Kejadian Stunting Di Kabupaten Pandeglang,” Maj. Sainstekes, vol. 8, no. 2, hal. 061–070, 2021, doi: 10.33476/ms.v8i2.2096.

A. Rahmidini, “Hubungan stunting dengan perkembangan motorik dan kognitif anak,” Semin. Nas. Kesehat., vol. 2, no. 1, hal. 90–104, 2020, [Daring]. Tersedia pada: http://www.ejurnal.stikesrespati-tsm.ac.id/index.php/semnas/article/download/272/192

S. Syahrial, R. Ilham, Z. F. Asikin, dan S. S. I. Nurdin, “Stunting Classification in Children’s Measurement Data Using Machine Learning Models,” J. La Multiapp, vol. 3, no. 2, hal. 52–60, 2022, doi: 10.37899/journallamultiapp.v3i2.614.

T. Vaivada, N. Akseer, S. Akseer, A. Somaskandan, M. Stefopulos, dan Z. A. Bhutta, “Stunting in childhood: An overview of global burden, trends, determinants, and drivers of decline,” Am. J. Clin. Nutr., vol. 112, hal. 777S-791S, 2020, doi: 10.1093/ajcn/nqaa159.

Kementrian Kesehatan RI, PP Menteri Kesehatan RI, vol. 21, no. 1. hal. 1–9. 2020,

R. Resmiati dan T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” Sistemasi, vol. 10, no. 2, hal. 381, 2021, doi: 10.32520/stmsi.v10i2.1238.

I. Ayuningtyas dan E. U. Kasanah, “Penerapan Synthetic Minority Oversampling Technique ( Smote ) Pada Kasus Dampak Covid-19 Terhadap ( Synthetic Minority Oversampling Technique Approach in Case of the Impact,” Bestari Bul. Stat. dan Apl. Terkini, vol. I, hal. 1–7, 2021.

G. R. Yang dan X. J. Wang, “Artificial Neural Networks for Neuroscientists: A Primer,” Neuron, vol. 107, no. 6, hal. 1048–1070, 2020, doi: 10.1016/j.neuron.2020.09.005.

M. A. Rahman, R. chandren Muniyandi, D. Albashish, M. M. Rahman, dan O. L. Usman, “Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer,” PeerJ Comput. Sci., vol. 7, hal. 2–27, 2021, doi: 10.7717/PEERJ-CS.344.

R. D. Fitriani, H. Yasin, dan T. Tarno, “Penanganan Klasifikasi Kelas Data Tidak Seimbang Dengan Random Oversampling Pada Naive Bayes (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal),” J. Gaussian, vol. 10, no. 1, hal. 11–20, 2021, doi: 10.14710/j.gauss.v10i1.30243.

S. Mutmainah, “Penanganan Imbalance Data Pada Klasifikasi Kemungkinan Penyakit Stroke,” SNATi, vol. 1, no. 1, hal. 10–16, 2021, doi: 10.20885/snati.v1i1.2.

N. Javaid, N. Jan, dan M. U. Javed, “An adaptive synthesis to handle imbalanced big data with deep siamese network for electricity theft detection in smart grids,” J. Parallel Distrib. Comput., vol. 153, hal. 44–52, 2021, doi: 10.1016/j.jpdc.2021.03.002.

A. J. Mohammed, “Improving Classification Performance for a Novel Imbalanced Medical Dataset using SMOTE Method,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, hal. 3161–3172, 2020, doi: 10.30534/ijatcse/2020/104932020.

D. Dablain, B. Krawczyk, dan N. V. Chawla, “DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data,” IEEE Trans. Neural Networks Learn. Syst., vol. 34, no. 9, hal. 6390–6404, 2023, doi: 10.1109/TNNLS.2021.3136503.

N. Chamidah, M. Mega Santoni, dan N. Matondang, “Terakreditasi SINTA Peringkat 2 Pengaruh Oversampling pada Klasifikasi Hipertensi dengan Algoritma Naïve Bayes, Decision Tree, dan Artificial Neural Network (ANN),” Masa Berlaku Mulai, vol. 1, no. 3, hal. 635–641, 2021.

K. M. Hasib dkk., “A Survey of Methods for Managing the Classification and Solution of Data Imbalance Problem,” J. Comput. Sci., vol. 16, no. 11, hal. 1546–1557, 2020, doi: 10.3844/JCSSP.2020.1546.1557.

M. Y. Matdoan, U. A. Matdoan, dan M. Saleh Far-Far, “Algoritma K-Means Untuk Klasifikasi Provinsi di Indonesia Berdasarkan Paket Pelayanan Stunting,” PANRITA J. Sci. Technol. Arts, vol. 1, no. 2, hal. 41–46, 2022, [Daring]. Tersedia pada: https://journal.dedikasi.org/pjsta

P. Vuttipittayamongkol, E. Elyan, dan A. Petrovski, “On the class overlap problem in imbalanced data classification,” Knowledge-Based Syst., vol. 212, no. 106631, 2021, doi: 10.1016/j.knosys.2020.106631.

B. Kovács, F. Tinya, C. Németh, dan P. Ódor, “Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment,” Ecol. Appl., vol. 30, no. 2, hal. 321–357, 2020, doi: 10.1002/eap.2043.

D. Krstinić, M. Braović, L. Šerić, dan D. Božić-Štulić, “Multi-label Classifier Performance Evaluation with Confusion Matrix,” hal. 01–14, 2020, doi: 10.5121/csit.2020.100801.

Published
2024-08-01
How to Cite
[1]
W. Baihaqi, I. Laela, and D. Darso, “IMPROVING STUNTING CLASSIFICATION PERFORMANCE USING COMBINATION SMOTE TECHNIQUE AND ARTIFICIAL NEURAL NETWORK ALGORITHM”, jitk, vol. 10, no. 1, pp. 160 - 167, Aug. 2024.

Most read articles by the same author(s)