SENTIMENT ANALYSIS ON RENEWABLE ENERGY ELECTRIC USING SUPPORT VECTOR MACHINE (SVM) BASED OPTIMIZATION
Abstract
Government policy regarding the discourse on the use of renewable energy in electricity, this discourse is widely discussed in the community, especially on social media twitter. The public's response to the implementation of the use of renewable energy varies, there are positive, negative and neutral responses to this government policy. Sentiment analysis is part of Machine Learning which aims to identify responses in the form of text. The data used in this study amounted to 1,367 tweets. The purpose of this study is to determine the sentiment analysis of government discourse related to the use of renewable energy using an optimisation-based Support Vector Machine (SVM) algorithm approach. This research involves several stages including data collection, data pre-processing, experiments and modelling and evaluation. The data is divided into 3 classes, 120 positive, 1221 neutral and 26 negative. In this research, there are five optimisation models used namely Forward Selection, Backward Elimination, Optimised Selection, Bagging and AdaBoost. The results obtained are the use of Optimised Selection (OS) optimisation with the Support Vector Machine (SVM) algorithm obtained an increase in accuracy from 93% to 96%. The increase in the use of SVM using selection optimization obtained the highest increase, because other optimization techniques only reached 1% and 2% of the original results using the SVM algorithm, namely the accuracy value of 93% to 96% (high accuracy). From the research that has been done, it is certainly important to understand public sentiment towards renewable energy policies, especially renewable energy electricity, the hope is that this research will become a reference for the government.
Downloads
References
A. Abdillah, I. Widianingsih, R. A. Buchari, and H. Nurasa, “Big data security & individual (psychological) resilience: A review of social media risks and lessons learned from Indonesia,” Array, vol. 21, no. February, 2024, doi: 10.1016/j.array.2024.100336.
D. Jeong, S. Hwang, J. Kim, H. Yu, and E. Park, “Public perspective on renewable and other energy resources: Evidence from social media big data and sentiment analysis,” Energy Strateg. Rev., vol. 50, no. September, p. 101243, 2023, doi: 10.1016/j.esr.2023.101243.
K. Muludi, M. S. Akbar, D. A. Shofiana, and A. Syarif, “Sentiment Analysis Of Energy Independence Tweets Using Simple Recurrent Neural Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 4, p. 339, 2021, doi: 10.22146/ijccs.66016.
A. A. Aldino, R. R. Suryono, and R. Ambarwati, “Analysis of Covid-19 Cash Direct Aid (BLT) Acceptance Using K-Nearest Neighbor Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 193, 2022, doi: 10.22146/ijccs.70801.
D. A. Vonega, A. Fadila, and D. E. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 129–135, 2022, doi: 10.30871/jaic.v6i2.4300.
A. J. N. Kisma, P. Arsi, and P. Subarkah, “Sentiment Analysis Regarding Candidate Presidential 2024 Using Support Vector Machine Backpropagation Based,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 8, no. 1, p. 96, 2024, doi: 10.31764/jtam.v8i1.17294.
D. I. Putri, A. N. Alfian, M. Y. Putra, and P. D. Mulyo, “IndoBERT Model Analysis : Twitter Sentiments on Indonesia ’ s 2024 Presidential Election,” vol. 8, no. 1, pp. 7–12, 2024.
U. Kurniasih and A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM),” J. Media Inform. Budidarma, vol. 6, no. 4, pp. 2335–2340, 2022, doi: 10.30865/mib.v6i4.4958.
M. S. Md Suhaimin, M. H. Ahmad Hijazi, E. G. Moung, P. N. E. Nohuddin, S. Chua, and F. Coenen, “Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 9, p. 101776, 2023, doi: 10.1016/j.jksuci.2023.101776.
Y. P. Mulyani et al., “Analyzing public discourse on photovoltaic (PV) adoption in Indonesia: A topic-based sentiment analysis of news articles and social media,” J. Clean. Prod., vol. 434, no. October 2023, p. 140233, 2024, doi: 10.1016/j.jclepro.2023.140233.
L. Terán and J. Mancera, “Dynamic profiles using sentiment analysis and twitter data for voting advice applications,” Gov. Inf. Q., vol. 36, no. 3, pp. 520–535, 2019, doi: 10.1016/j.giq.2019.03.003.
M. S. Santoso, J. J. Suryadi, K. Marchellino, G. Z. Nabiilah, and Rojali, “A Comparative Analysis of Decision Tree and Support Vector Machine on Suicide Ideation Detection,” Procedia Comput. Sci., vol. 227, pp. 518–523, 2023, doi: 10.1016/j.procs.2023.10.553.
K. H. Manguri, R. N. Ramadhan, and P. R. Mohammed Amin, “Twitter Sentiment Analysis on Worldwide COVID-19 Outbreaks,” Kurdistan J. Appl. Res., pp. 54–65, 2020, doi: 10.24017/covid.8.
Y. Wang, J. Guo, C. Yuan, and B. Li, “Sentiment Analysis of Twitter Data,” Appl. Sci., vol. 12, no. 22, pp. 1–14, 2022, doi: 10.3390/app122211775.
B. AlBadani, R. Shi, and J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” Appl. Syst. Innov., vol. 5, no. 1, 2022, doi: 10.3390/asi5010013.
W. Silalahi and A. Hartanto, “Klasifikasi Sentimen Support Vector Machine Berbasis Optimasi Menyambut Pemilu 2024,” JRST (Jurnal Ris. Sains dan Teknol., vol. 7, no. 2, p. 245, 2023, doi: 10.30595/jrst.v7i2.18133.
T. S. Sabrila, Y. Azhar, and C. S. K. Aditya, “Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 1, pp. 10–19, 2022, doi: 10.14421/jiska.2022.7.1.10-19.
A. Saepudin, R. Aryanti, E. Fitriani, and Dahlila, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
A. E. Augustia, R. Taufan, Y. Alkhalifi, and W. Gata, “Analisis Sentimen Omnibus Law Pada Twitter Dengan Algoritma Klasifikasi Berbasis Particle Swarm Optimization,” Paradig. - J. Komput. dan Inform., vol. 23, no. 2, pp. 158–166, 2021, doi: 10.31294/p.v23i2.10430.
I. Tahyudin et al., Big Data dan Analytics. Purwokerto: Zahira Media Publiser, 2023.
B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
J. S. Pimentel, R. Ospina, and A. Ara, “A novel fusion Support Vector Machine integrating weak and sphere models for classification challenges with massive data,” Decis. Anal. J., vol. 11, no. December 2023, p. 100457, 2024, doi: 10.1016/j.dajour.2024.100457.
C. Shofiya and S. Abidi, “Sentiment analysis on covid-19-related social distancing in Canada using twitter data,” Int. J. Environ. Res. Public Health, vol. 18, no. 11, 2021, doi: 10.3390/ijerph18115993.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques 3rd Edition. San Fransisco: Morgan Kauffman, 2012.
T. B. Sasongko and O. Arifin, “Implementasi Metode Forward Selection Pada Algoritma Support Vector Machine (Svm) Dan Naive Bayes Classifier Kernel Density (Studi Kasus Klasifikasi Jalur Minat Sma),” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 383–388, 2019, doi: 10.25126/jtiik.201961000.
J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, Third Edit., vol. 5. USA: Elsevier, 2012. doi: 10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.
R. Resmiati and T. Arifin, “Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” Sistemasi, vol. 10, no. 2, p. 381, 2021, doi: 10.32520/stmsi.v10i2.1238.
Copyright (c) 2024 Pungkas Subarkah, Bagus Adhi Kusuma, Primandani Arsi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.