IMPLEMENTATION OF MULTIPLE LINEAR REGRESSION ALGORITHM IN PREDICTING RED CHILI PRICES IN GARUT REGENCY
Abstract
Vegetables, including red chili peppers, play an important role in food and economic balance. Significant price fluctuations and inflation are often problems for farmers and traders. Garut Regency, as the center of red chili production in West Java, faces similar challenges. This research aims to implement a Multiple Linear Regression algorithm to predict the price of red chili peppers in the Garut Regency, highlighting the novelty of using a combination of One Hot Encoding, Feature Engineering, Standard Scaler, and Hyperparameter Tuning techniques. The method used is CRISP-DM with 6 stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The data used is the price and production of red chili peppers per week in 2018-2023, with a total of 702 records. This research involved 8 trials with data transformation and normalization scenarios. The model evaluation used MSE, RMSE, MAPE, R-squared, and statistical hypothesis testing metrics. Results showed 5 significantly influential attributes: year, month, production, net harvested area, and productivity. The best model yielded MSE 202,134,650, RMSE 14,217, MAPE 29.16%, and R-squared 0.320. This approach is simpler yet effective and is able to provide fairly accurate predictions. This research is expected to contribute to providing predictive models that help farmers and traders anticipate price fluctuations, as well as provide insights for policymakers in price management.
Downloads
References
A. Hia, R. Nurmalina, and A. Rifin, “Efisiensi Pemasaran Cabai Rawit Merah Di Desa Cidatar Kecamatan Cisurupan Kabupaten Garut,” Forum Agribisnis, vol. 10, no. 1, pp. 36–45, 2020, doi: 10.29244/fagb.10.1.36-45.
B. P. Statistik, “Rata-Rata Konsumsi per Kapita Seminggu Beberapa Macam Bahan Makanan Penting, 2007-2023,” Badan Pusat Statistik, 2024. https://www.bps.go.id/id/statistics-table/1/OTUwIzE=/rata-rata-konsumsi-per-kapita-seminggu-beberapa-macam-bahan-makanan-penting-2007-2023.html
Badan Pusat Statistik Kabupaten Garut, “Produksi Tanaman Sayuran Cabai Rawit Menurut Kecamatan di Kabupaten Garut (Kuintal ), 2020-2021,” BPS Kabupaten Garut, 2021. https://garutkab.bps.go.id/
N. Moha Lalapa and W. Yunus, “Implementasi Metode Regresi Linear Sederhana Untuk Prediksi Harga Cabai Rawit,” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 2, no. 2, p. 96, 2023, doi: https://doi.org/10.15548/jostech.v2i1.3802
P. Ekawati, Nia; Wilson, “Prediksi Harga Cabai Merah Menggunakan Jaringan Syarat Tiruan,” Journalinformatics Electron. Eng., vol. 1, no. 2, pp. 58–65, 2021, [Online]. Available: https://ejournal.poltektedc.ac.id/index.php/jiee/article/view/537/399
L. Susanti, S. J. Pririzki, Z. Zeleansi, and D. Y. Dalimunthe, “Prediksi Harga Cabai Rawit Merah Sebagai Kebutuhan Pangan Masyarakat Di Kota Pangkalpinang,” in Proceedings of …, 2022, pp. 140–145. [Online]. Available: https://journal.ubb.ac.id/snppm/article/view/3752
V. Komaria, N. El Maidah, and M. A. Furqon, “Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 37–47, 2023, doi: 10.34010/komputika.v12i2.10644.
M. David, I. Cholissodin, and N. Yudistira, “Prediksi Harga Cabai menggunakan Metode Long-Short Term Memory (Case Study : Kota Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1214–1219, 2023.
M. Bedy Purnama, S.si., Pengantar Machine Learning. Bandung: Informatika Bandung, 2019.
J. Brzozowska, J. Pizoń, G. Baytikenova, A. Gola, A. Zakimova, and K. Piotrowska, “Data Engineering In Crisp-Dm Process Production Data – Case Study,” vol. 19, no. 3, pp. 83–95, 2023, doi: 10.35784/acs-2023-26.
Y. Yudiana, A. Yulia, and N. Khofifah, “Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan,” vol. 8, no. 1, pp. 1–20, 2023, doi: https://doi.org/10.30631/ijoieb.v8i1.1710
N. Widiawati, B. N. Sari, and T. N. Padilah, “Clustering Data Penduduk Miskin Dampak Covid-19 Menggunakan,” vol. 6, no. 1, pp. 55–63, 2022, doi: https://doi.org/10.30871/jaic.v6i1.3266
B. N. Azmi, A. Hermawan, and D. Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” vol. 4, no. 4, pp. 281–290, 2023, doi: https://doi.org/10.35746/jtim.v4i4.298
Y. Mulyanto and A. Algi Fari, “Analisis Keamanan Login Router Mikrotik Dari Serangan Bruteforce Menggunakan Metode Penetration Testing (Studi Kasus: Smk Negeri 2 Sumbawa),” J. Inform. Teknol. dan Sains, vol. 4, no. 3, pp. 145–155, 2022, doi: 10.51401/jinteks.v4i3.1897.
I. Permana and F. N. Salisah, “The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation,” vol. 2, no. 1, pp. 67–72, 2022, doi: https://doi.org/10.57152/ijirse.v2i1.311
Copyright (c) 2024 Yoga Handoko Agustin, Fitri Nuraeni, Rika Lestari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.