• Tyas Setiyorini (1*) STMIK Nusa Mandiri
  • Rizky Tri Asmono (2) Teknik Informatika STMIK Swadharma

  • (*) Corresponding Author
Keywords: Student Performance Classification, K-Nearest Neighbor, Information Gain


Education is a very important problem in the development of a country. One way to reach the level of quality of education is to predict student academic performance. The method used is still using an ineffective way because evaluation is based solely on the educator's assessment of information on the progress of student learning. Information on the progress of student learning is not enough to form indicators in evaluating student performance and helping students and educators to make improvements in learning and teaching. K-Nearest Neighbor is an effective method for classifying student performance, but K-Nearest Neighbor has problems in terms of large vector dimensions. This study aims to predict the academic performance of students using the K-Nearest Neighbor algorithm with the Information Gain feature selection method to reduce vector dimensions. Several experiments were conducted to obtain an optimal architecture and produce accurate classifications. The results of 10 experiments with k values ​​(1 to 10) in the student performance dataset with the K-Nearest Neighbor method showed the largest average accuracy of 74.068 while the K-Nearest Neighbor and Information Gain methods obtained the highest average accuracy of 76.553. From the results of these tests it can be concluded that Information Gain can reduce vector dimensions, so that the application of K-Nearest Neighbor and Information Gain can improve the accuracy of the classification of student performance better than using the K-Nearest Neighbor method.


Download data is not yet available.


Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108.

Aghbari, Z. Al. (2005). Array-index: A plug&search K nearest neighbors method for high-dimensional data. Data and Knowledge Engineering, 52(3), 333–352.

Al-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., … Olatunji, S. O. (2017). Student performance prediction using Support Vector Machine and K-Nearest Neighbor. Canadian Conference on Electrical and Computer Engineering, 17–20.

Alkhasawneh, R., & Hobson, R. (2011). Modeling student retention in science and engineering disciplines using neural networks. In 2011 IEEE Global Engineering Education Conference, EDUCON 2011 (pp. 660–663).

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting student performance from LMS data: A comparison of 17 blended courses using moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17–29.

Cortez, P., & Silva, A. (2008). Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008), 5–12.

de Vries, A. P., Mamoulis, N., Nes, N., & Kersten, M. (2003). Efficient k-NN search on vertically decomposed data (p. 322).

Gallager, R. G. (2001). Claude E. Shannon: A retrospective on his life, work, and impact. IEEE Transactions on Information Theory, 47(7), 2681–2695.

George Gorman. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305.

Gou, J., Zhan, Y., Rao, Y., Shen, X., Wang, X., & He, W. (2014). Improved pseudo nearest neighbor classification. Knowledge-Based Systems, 70, 361–375.

Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm. Procedia Technology, 25, 326–332.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining. In Data Mining (pp. 1–38).

Hand, D. J. (2007). Principles of data mining. Drug Safety, 30(7), 621–622.

Ibrahim, Z., & Rusli, D. (2007). Predicting Students’ Academic Performance: Comparing Artificial Neural Network, Decision tree And Linear Regression. Proceedings of the 21st Annual SAS Malaysia Forum, (September), 1–6. Retrieved from’_Academic_Performance_Comparing_Artificial_Neural_Network_Decision_Tree_and_Linear_Regression/links/0deec51bb04e76ed93000000.pdf

Koncz, P., & Paralic, J. (2011). An approach to feature selection for sentiment analysis. In INES 2011 - 15th International Conference on Intelligent Engineering Systems, Proceedings (pp. 357–362).

Lin, Y., Li, J., Lin, M., & Chen, J. (2014). A new nearest neighbor classifier via fusing neighborhood information. Neurocomputing, 143, 164–169.

Lopez Guarin, C. E., Guzman, E. L., & Gonzalez, F. A. (2015). A Model to Predict Low Academic Performance at a Specific Enrollment Using Data Mining. Revista Iberoamericana de Tecnologias Del Aprendizaje, 10(3), 119–125.

Lu, L. R., & Fa, H. Y. (2004). A Density-Based Method for Reducing the Amount of Training Data in kNN Text Classification [J]. Journal of Computer Research and Development, 4, 003.

Pandey, M., & Taruna, S. (2016). Towards the integration of multiple classifier pertaining to the Student’s performance prediction. Perspectives in Science, 8, 364–366.

Setiyorini, T., & Asmono, R. T. (2017). Penerapan Gini Index dan K-Nearest Neighbor untuk Klasifikasi Tingkat Kognitif Soal pada Taksonomi Bloom. Jurnal Pilar Nusa Mandiri, 13(2), 209–216.

Setiyorini, T., & Asmono, R. T. (2019). Laporan Akhir Penelitian Mandiri.

Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422.

Vercellis, C. (2009). Data mining and optomization for decision making. Business Intelligence (Vol. 1).

Wang, S., Li, D., Song, X., Wei, Y., & Li, H. (2011). A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification. Expert Systems with Applications, 38(7), 8696–8702.

Won Yoon, J., & Friel, N. (2015). Efficient model selection for probabilistic K nearest neighbour classification. Neurocomputing, 149(PB), 1098–1108.

Xu, T., Peng, Q., & Cheng, Y. (2012). Identifying the semantic orientation of terms using S-HAL for sentiment analysis. Knowledge-Based Systems, 35, 279–289.

Yang, F., & Li, F. W. B. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers and Education, 123(October 2017), 97–108.

Zhang, J., & Tan, S. (2008). An empirical study of sentiment analysis for chinese documents. EXPERT SYSTEMS WITH APPLICATIONS, 34(4), 2622–2629.

How to Cite
Article Metrics

Abstract viewed = 736 times
PDF downloaded = 809 times