COMPARATIVE PERFORMANCE STUDY OF SEARCH ALGORITHMS ON LARGE-SCALE DATA STRUCTURES

Authors

  • purnama182 Nyoman Purnama Universitas Primakara

DOI:

https://doi.org/10.33480/jitk.v11i1.6592

Keywords:

amazon reviews, large-scale data structures, performance analysis, search algorithms, time complexity

Abstract

In the era of big data, searching for information in big data sets is a big challenge that requires efficient search algorithms. This study compares the performance of three classic search algorithms, namely linear search, binary search, and hash search. This study uses large-scale datasets, namely Amazon Product Reviews and Amazon Customer Reviews. Evaluations were conducted based on the complexity of time for each search method. The results of the experiment showed that linear search had the slowest performance with O(n) time complexity, making it inefficient for large data sets. Binary search performs better with O(log n) complexity, but requires pre-sorted data. Hash searches provide the most optimal results in best-case and average with O(1) complexity, but can be reduced to O(n) in the worst case when there are too many collisions in the hash function. Hash search consistently outperforms linear and binary searches in terms of execution speed. Binary search remains highly efficient for sorted data, while linear search is clearly the least efficient, especially for large-scale datasets. Linear search has high execution times and is inconsistent, while binary and hash search are more efficient and stable. The algorithm's performance did not differ significantly between datasets, suggesting the data structure did not affect performance as long as the search type was the same.

Downloads

Download data is not yet available.

References

N. Akbar Rizky Putri, T. Bharata Adji, and K. Kunci-Google BigQuery, “Data Benchmark pada Google BigQuery dan Elasticsearch (Data Benchmark for Google BigQuery and Elasticsearch),” 2021. [Online]. Available: http://netlytic.org/

Y. Surampudi, D. Kondaveeti, and T. Pichaimani, “A Comparative Study of Time Complexity in Big Data Engineering: Evaluating Efficiency of Sorting and Searching Algorithms in Large-Scale Data Systems,” 2023.

D. R. Zmaranda, C. I. Moisi, C. A. Győrödi, R. Győrödi, and L. Bandici, “An analysis of the performance and configuration features of mysql document store and elasticsearch as an alternative backend in a data replication solution,” Applied Sciences (Switzerland), vol. 11, no. 24, Dec. 2021, doi: 10.3390/app112411590.

F. Almeida, “Foresights for big data across industries,” Foresight, vol. 25, no. 3, pp. 334–348, May 2023, doi: 10.1108/FS-02-2021-0059.

O. A. Chernova, I. V. Mitrofanova, M. V. Pleshakova, and V. V. Batmanova, “USE OF BIG DATA ANALYTICS FOR SMALL AND MEDIUM SIZED BUSINESSES,” Serbian Journal of Management, vol. 18, no. 1, pp. 93–109, 2023, doi: 10.5937/sjm18-41822.

A. Mesut and E. Öztürk, “A method to improve full-text search performance of MongoDB,” Pamukkale University Journal of Engineering Sciences, vol. 28, no. 5, pp. 720–729, 2022, doi: 10.5505/pajes.2021.89590.

M. Emran Hossain, S. Bayazid Hossain, M. Sha Alam Tutul, and S. Nahar, “Optimized Search Functionality with Linear Search Algorithm,” 2022. doi: 10.21467/proceedings.123.

R. Y. Darmawantoro, Y. R. W. Utami, and K. Kustanto, “Implementasi Binary Search Untuk Data Obat di Apotek,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 10, no. 1, May 2022, doi: 10.30646/tikomsin.v10i1.607.

W. Iqbal, W. I. Malik, F. Bukhari, K. M. Almustafa, and Z. Nawaz, “Big data full-text search index minimization using text summarization,” Information Technology and Control, vol. 50, no. 2, pp. 375–389, 2021, doi: 10.5755/j01.itc.50.2.25470.

F. Frankie and Y. A. Susetyo, “IMPLEMENTATION OF TEXT INDEXING SYSTEM IN WEB-BASED DOCUMENT SEARCH APPLICATION USING MONGODB,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, pp. 1081–1087, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.959.

A. Yudhistira and Y. Fitrisia, “MONITORING LOG SERVER DENGAN ELASTICSEARCH, LOGSTASH DAN KIBANA (ELK),” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 8, no. 1, pp. 124–134, Apr. 2023, doi: 10.36341/rabit.v8i1.2975.

Z. A. Al-Sai et al., “Explore Big Data Analytics Applications and Opportunities: A Review,” Dec. 01, 2022, MDPI. doi: 10.3390/bdcc6040157.

H. Henderi, R. Irawatia, I. Indra, D. A. Dewi, and T. B. Kurniawan, “Big Data Analysis using Elasticsearch and Kibana: A Rating Correlation to Sustainable Sales of Electronic Goods,” HighTech and Innovation Journal, vol. 4, no. 3, pp. 583–591, Sep. 2023, doi: 10.28991/HIJ-2023-04-03-09.

A. C. Herrero, J. A. Sanguesa, P. Garrido, F. J. Martinez, and C. T. Calafate, “MoBiSea: A Binary Search Algorithm for Product Clustering in Industry 4.0,” Electronics (Switzerland), vol. 12, no. 15, Aug. 2023, doi: 10.3390/electronics12153262.

Md. Z. Rahman, “A Comparative Analysis of Four Distinct Types of Searching Algorithms in Data Structure,” Int J Res Appl Sci Eng Technol, vol. 9, no. 4, pp. 374–377, Apr. 2021, doi: 10.22214/ijraset.2021.33614.

W. Istiono, “Speed Analysis of Binary Search and Interpolation Search for Searching Identification Numbers on National Identity Cards,” Asian Journal of Research in Computer Science, vol. 15, no. 4, pp. 34–41, May 2023, doi: 10.9734/ajrcos/2023/v15i4328.

S. A. A. N. D. C. Malathy, “Big Data Query Optimization -Literature Survey,” Sep. 2021. doi: 10.21203/rs.3.rs-655386/v1.

A. K. Sandhu, “Big Data with Cloud Computing: Discussions and Challenges,” Big Data Mining and Analytics, vol. 5, no. 1, Mar. 2022, doi: 10.26599/BDMA.2021.9020016.

A. Oussous and F. Zahra Benjelloun, “A COMPARATIVE STUDY OF DIFFERENT SEARCH AND INDEXING TOOLS FOR BIG DATA,” 2022.

M. Al-Hashimi and N. Aljabri, “Exploring Power Advantage of Binary Search: An Experimental Study.” [Online]. Available: www.ijacsa.thesai.org

M. Al-Hashimi and N. Aljabri, “Exploring Power Advantage of Binary Search: An Experimental Study.” [Online]. Available: www.ijacsa.thesai.org

L. Baloch et al., “A Review of Big Data Trends and Challenges in Healthcare,” 2023, Faculty of Engineering, Universitas Indonesia. doi: 10.14716/ijtech.v14i6.6643.

N. R. Feta and F. Fitria, “IMPLEMENTATION OF CONCOLIC UNIT TESTING IN TESTING BINARY SEARCH ALGORITHM USING JCUTE,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 7, no. 2, pp. 37–44, Feb. 2022, doi: 10.33480/jitk.v7i2.2758.

Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, and Antika Zahrotul Kamalia, “PERBANDINGAN ALGORITMA LINEAR REGRESSION, LSTM, DAN GRU DALAM MEMPREDIKSI HARGA SAHAM DENGAN MODEL TIME SERIES,” SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov. 2021, doi: 10.47002/seminastika.v3i1.275.

R. Y. Darmawantoro, Y. R. W. Utami, and K. Kustanto, “Implementasi Binary Search Untuk Data Obat di Apotek,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 10, no. 1, May 2022, doi: 10.30646/tikomsin.v10i1.607.

F. R. Wibowo and M. Faisal, “Comparative Analysis of Sorting Algorithms: TimSort Python and Classical Sorting Methods,” Jurnal Informatika dan Sains), vol. 07, no. 01, 2024.

P. E. Rizqullah, R. Titi, and K. Sari, “STRING (Satuan Tulisan Riset dan Inovasi Teknologi) ALGORITMA SEQUENTIAL SEARCH DAN HASHING PADA APLIKASI E-LAPOR LAYANAN PUBLIK RUKUN TETANGGA,” 2022.

M. Al-Hashimi and N. Aljabri, “Exploring Power Advantage of Binary Search: An Experimental Study,” 2022. [Online]. Available: www.ijacsa.thesai.org

Downloads

Published

2025-08-15

How to Cite

[1]
purnama182 Nyoman Purnama, “COMPARATIVE PERFORMANCE STUDY OF SEARCH ALGORITHMS ON LARGE-SCALE DATA STRUCTURES”, jitk, vol. 11, no. 1, pp. 99–109, Aug. 2025.