CLUSTER-BASED MACHINE LEARNING APPROACHES FOR PREDICTING DAILY MAXIMUM TEMPERATURES IN INDONESIA UNDER CLIMATE CHANGE

Authors

  • Uston Universitas Internasional Semen Indonesia
  • Brina
  • Taufiqotul Bariyah Universitas Internasional Semen Indonesia
  • Heri Kuswanto Institut Teknologi Sepuluh Nopember
  • Niswatun Faria Universitas Internasional Semen Indonesia

DOI:

https://doi.org/10.33480/jitk.v11i1.6749

Keywords:

climate change , climate clustering , early warning systems, spatially adaptive framework, support vector regression (SVR)

Abstract

Climate change is increasing the frequency of extreme temperatures in Indonesia, creating significant prediction challenges due to its geographical diversity. To address this, the study proposes a spatially adaptive framework using BNU-ESM and ERA5 data (1980–2005). The Indonesian region was classified into four climate clusters via K-Means, where Support Vector Regression (SVR), Random Forest (RF), and XGBoost models were evaluated. Results show SVR consistently outperformed other models across all clusters. In stable regions, SVR achieved the highest accuracy (RMSE 0.10; MAE 0.08) and remained superior even in the most volatile clusters. The study's novelty is the integration of clustering with comparative model evaluation, offering a robust methodology for precise, regionally adaptive climate early warning systems.Practically, this predictive model can support national mitigation strategies by enabling proactive resource allocation and targeted interventions in high-risk climate zones.

Downloads

Download data is not yet available.

References

B. Fallah and M. Rostami, “Exploring the impact of the recent global warming on extreme weather events in Central Asia using the counterfactual climate data,” Clim Change, vol. 177, no. 5, May 2024, doi: 10.1007/s10584-024-03743-0.

S. Prasetyo, N. Nuraini, P. Studi Meteorologi, and S. Tinggi Meteorologi Klimatologi dan Geofisika, “Analisis tren perubahan suhu udara dan curah hujan berdasarkan data observasi BMKG di Kota Denpasar,” Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, 2021, doi: 10.24036/geografi/volx-issx/xxx.

D. Bidang Klimatologi Badan Meteorologi and D. Geofisika Jakarta, “Catatan Iklim Kualitas Udara Indonesia 2024,” 2024.

World Meteorological Organization, “WMO report documents spiralling weather and climate impacts,” World Meteorological Organization. Accessed: Jun. 06, 2025. [Online]. Available: https://wmo.int/news/media-centre/wmo-report-documents-spiralling-weather-and-climate-impacts

T. M. Basuki et al., “Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review,” Aug. 01, 2022, MDPI. doi: 10.3390/su14169997.

D. Colozza et al., “The impact of climate change on child nutrition in Indonesia: a conceptual framework and scoping review of the available evidence,” BMJ Paediatr Open, vol. 9, no. 1, p. e002980, Mar. 2025, doi: 10.1136/bmjpo-2024-002980.

A. Kurniadi, E. Weller, Y. H. Kim, and S. K. Min, “Evaluation of Coupled Model Intercomparison Project Phase 6 model-simulated extreme precipitation over Indonesia,” International Journal of Climatology, vol. 43, no. 1, pp. 174–196, Jan. 2023, doi: 10.1002/joc.7744.

I. Ebtehaj and H. Bonakdari, “CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks,” Atmosphere (Basel), vol. 15, no. 9, Sep. 2024, doi: 10.3390/atmos15091082.

V. Monita, S. Raniprima, and N. Cahyadi, “Comparative Analysis of Daily and Weekly Heavy Rain Prediction Using LSTM and Cloud Data,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 4, pp. 833–842, 2024, doi: 10.26555/jiteki.v10i4.30374.

M. Putra, M. S. Rosid, and D. Handoko, “High-Resolution Rainfall Estimation Using Ensemble Learning Techniques and Multisensor Data Integration,” Sensors, vol. 24, no. 15, Aug. 2024, doi: 10.3390/s24155030.

K. Yadav, S. Malviya, and A. K. Tiwari, “Improving Weather Forecasting in Remote Regions Through Machine Learning,” Atmosphere (Basel), vol. 16, no. 5, May 2025, doi: 10.3390/atmos16050587.

S. Najwa et al., “Integrating Spatial Autoregressive Exogenous with Ordinary Kriging for Improved Rainfall Prediction in Java: Enhancing Accuracy with Climate Variables and Spatial Autocorrelation,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 7, no. 1, pp. 25–43, Mar. 2025, doi: 10.15408/inprime.v7i1.42070.

R. R. Wood, J. Janzing, A. van Hamel, J. Götte, D. L. Schumacher, and M. I. Brunner, “Comparison of high-resolution climate reanalysis datasets for hydro-climatic impact studies,” Oct. 07, 2024. doi: 10.5194/egusphere-2024-2905.

B. Miftahurrohmah, H. Kuswanto, D. S. Pambudi, F. Fauzi, and F. Atmaja, “Assessment of the Support Vector Regression and Random Forest Algorithms in the Bias Correction Process on Temperatures,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 637–644. doi: 10.1016/j.procs.2024.03.049.

B. Miftahurrohmah, I. A. Cholilie, S. U. Wijaya, F. Atmaja, T. Bariyah, and C. Wulandari, “Future Growing Seasons: Bias Correction with SVR and QDM for Indonesian Temperature Projection under RCP 2.6 and RCP 8.5,” J Curr Sci Technol, vol. 15, no. 2, Apr. 2025, doi: 10.59796/jcst.V15N2.2025.100.

F. Atmaja, B. Miftahurrohmah, I. A. Cholilie, S. U. Wijaya, N. Haliza, and Y. A. Utami, “Improving Agricultural Productivity in Indonesia Using Xgboost Precipitation Prediction with Downscaling and Bias Correction,” in 2024 7th International Conference on Informatics and Computational Sciences (ICICoS), 2024, pp. 485–490. doi: 10.1109/ICICoS62600.2024.10636822.

Z. M. E. Darmawan, A. F. Dianta, K. Fathoni, O. C. R. Rachmawati, and K. I. Apriandy, “Comparison of Machine Learning Classification Methods for Weather Prediction: A Performance Analysis,” G-Tech: Jurnal Teknologi Terapan, vol. 9, no. 2, pp. 715–727, Apr. 2025, doi: 10.70609/gtech.v9i2.6649.

W. Harjupa and E. Nakakita, “Investigation and future projections of warm rain during the winter monsoon in the Western Java Sea, Indonesia,” Frontiers in Climate, vol. 7, May 2025, doi: 10.3389/fclim.2025.1581382.

D. Zhao, Z. Chen, Z. Li, X. Yuan, and I. Taniguchi, “Improving Building Temperature Forecasting: A Data-driven Approach with System Scenario Clustering,” Feb. 2024, [Online]. Available: http://arxiv.org/abs/2402.13628

Q. Van Doan, T. Amagasa, T. H. Pham, T. Sato, F. Chen, and H. Kusaka, “Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data,” Geosci Model Dev, vol. 16, no. 8, pp. 2215–2233, Apr. 2023, doi: 10.5194/gmd-16-2215-2023.

L. A. Pampuch, R. G. Negri, P. C. Loikith, and C. A. Bortolozo, “A Review on Clustering Methods for Climatology Analysis and Its Application over South America,” International Journal of Geosciences, vol. 14, no. 09, pp. 877–894, 2023, doi: 10.4236/ijg.2023.149047.

Q. Van Doan, T. Amagasa, T. H. Pham, T. Sato, F. Chen, and H. Kusaka, “Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data,” Geosci Model Dev, vol. 16, no. 8, pp. 2215–2233, Apr. 2023, doi: 10.5194/gmd-16-2215-2023.

O. Kisi, S. Heddam, K. S. Parmar, A. Petroselli, C. Külls, and M. Zounemat-Kermani, “Integration of Gaussian process regression and K means clustering for enhanced short term rainfall runoff modeling,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-91339-8.

X. Yu, C. Liu, X. Wang, J. Cao, J. Dong, and Y. Liu, “Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China,” Adv Atmos Sci, vol. 39, no. 6, pp. 903–926, 2022, doi: 10.1007/s00376-021-1153-4.

M. D. Bailey, D. Nychka, M. Sengupta, A. Habte, Y. Xie, and S. Bandyopadhyay, “Regridding uncertainty for statistical downscaling of solar radiation,” Adv Stat Climatol Meteorol Oceanogr, vol. 9, no. 2, pp. 103–120, Dec. 2023, doi: 10.5194/ascmo-9-103-2023.

M. A. Stern et al., “Selecting the Optimal Fine-Scale Historical Climate Data for Assessing Current and Future Hydrological Conditions,” 2022, doi: 10.1175/JHM-D-21.

R. D. Hunter and R. K. Meentemeyer, “Climatologically Aided Mapping of Daily Precipitation and Temperature,” 2025.

E. A. Saputra and Y. Nataliani, “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” Journal of Information Systems and Informatics, vol. 3, no. 3, 2021, [Online]. Available: http://journal-isi.org/index.php/isi

I. C. Azhari and T. Haryanto, “Modeling Of Hyperparameter Tuned RNN-LSTM and Deep Learning For Garlic Price Forecasting In Indonesia,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 7, no. 2, pp. 502–513, Jan. 2024, doi: 10.31289/jite.v7i2.10714.

F. Setio Pribadi, F. Matematika dan Ilmu Pengetahuan Alam, U. Negeri Semarang, and B. Meteorologi Klimatologi dan Geofisika, “Penerapan Algoritma Linear Regression dan Support Vector Regression dalam Prediksi Temperatur Udara di Malang Application of Linear Regression and Support Vector Regression Algorithms in Air Temperature Prediction in Malang,” 2025.

A. Syahreza, N. K. Ningrum, and M. A. Syahrazy, “Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost,” Edumatic: Jurnal Pendidikan Informatika, vol. 8, no. 2, pp. 526–534, Dec. 2024, doi: 10.29408/edumatic.v8i2.27640.

G. N. Lesnusa, Dwi Shinta Angreni, and R. Ardiansyah, “Perbandingan Akurasi Linear Regression dan Support Vector Regression dalam Prediksi Suhu Rata Rata,” The Indonesian Journal of Computer Science, vol. 13, no. 4, Jun. 2024, doi: 10.33022/ijcs.v13i4.3944.

Z. A. Dwiyanti and C. Prianto, “Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 127–137, Oct. 2023, doi: 10.36787/jti.v17i2.1136.

F. Sevgin, “Machine Learning-Based Temperature Forecasting for Sustainable Climate Change Adaptation and Mitigation,” Sustainability (Switzerland), vol. 17, no. 5, Mar. 2025, doi: 10.3390/su17051812.

H. Taneja, V. Jain, A. Jain, A. K. Dubey, M. C. Taplamacioglu, and M. Demirci, “Weather prediction using regression algorithm and neural network technique,” International Journal on "Technical and Physical Problems of Engineering, 2024, [Online]. Available: www.iotpe.com

A. Wickramasinghe, S. Muthukumarana, D. Loewen, and M. Schaubroeck, “Temperature clusters in commercial buildings using k-means and time series clustering,” Energy Informatics, vol. 5, no. 1, Dec. 2022, doi: 10.1186/s42162-022-00186-8.

Saylor Academy, “CS205: Metrics for Linear Regression Effectiveness: R-squared, MSE and RSE | Saylor Academy.” Accessed: May 18, 2025. [Online]. Available: https://learn.saylor.org/mod/page/view.php?id=80811

Arize Machine Learning Course, “Mean Absolute Percentage Error (MAPE): What You Need To Know - Arize AI.” Accessed: May 18, 2025. [Online]. Available: https://arize.com/blog-course/mean-absolute-percentage-error-mape-what-you-need-to-know/

Arize Machine Learning Course, “Mean Absolute Error In Machine Learning: What You Need To Know - Arize AI,” 2023, Accessed: May 18, 2025. [Online]. Available: https://arize.com/blog-course/mean-absolute-error-in-machine-learning-what-you-need-to-know/

Downloads

Published

2025-08-30

How to Cite

[1]
Uston Nawawi Christanto, Brina Miftahurrohmah, T. . Bariyah, H. . Kuswanto, and N. . Faria, “CLUSTER-BASED MACHINE LEARNING APPROACHES FOR PREDICTING DAILY MAXIMUM TEMPERATURES IN INDONESIA UNDER CLIMATE CHANGE”, jitk, vol. 11, no. 1, pp. 236–249, Aug. 2025.