COMPARATIVE ANALYSIS OF YOLO DEEP LEARNING MODEL FOR IMAGE-BASED BEEF FRESHNESS DETECTION
DOI:
https://doi.org/10.33480/jitk.v11i1.6784Keywords:
beef freshness, deep learning, object detection, YOLOAbstract
Ensuring beef freshness is essential to protect consumer health and maintain public trust in the food supply chain. However, conventional freshness assessment relies on subjective human sensory judgment and can be inconsistent. This study presents a comparative evaluation of three YOLO models, YOLOv5sM (with targeted augmentations Flip, Rotation, Mosaic), YOLOv8, and YOLOv11 for automated beef freshness detection in digital images. Unlike prior studies focusing on a single YOLO version, this work systematically compares multiple YOLO generations to assess accuracy and computational efficiency. Evaluation metrics included precision, recall, mAP@0.5, mAP@0.5:0.95, and training time. A labeled dataset of 4,000 beef images (fresh and non-fresh) was split into training, validation, and test sets, with augmentation applied only to YOLOv5sM. All three models achieved 100% precision and recall on the test set; however, this likely reflects dataset homogeneity and potential overfitting, limiting interpretation of these results. YOLOv11 achieved the highest localization accuracy (mAP@0.5:0.95 = 97.0%), followed by YOLOv8 (96.9%) and YOLOv5sM (96.2%). YOLOv8 had the shortest training time (54 minutes), whereas YOLOv11 offered the best balance of accuracy, model size (5.4 MB), and computational efficiency. Overall, YOLOv11 emerged as the optimal model, offering superior performance and practical deployment advantages over earlier YOLO versions. As the first systematic comparison of multiple YOLO generations for beef freshness detection, this study provides novel insights into detection accuracy and computational efficiency.
Downloads
References
N. W. Smith, Andrew J. Fletcher, Jeremy P. Hill, and Warren C. McNab, “The Role of Meat in the Human Diet: Evolutionary Aspects and Nutritional Value,” Anim. Front., vol. 13, no. 2, pp. 11–18, 2023, doi: 10.1093/af/vfac093.
N. W. S. A. J. F. J. P. H. W. C. McNabb, “Modeling the Contribution of Meat to Global Nutrient Availability,” Front. Nutr., vol. 9, 2022, doi: 10.3389/fnut.2022.766796.
Melissa Kavanaugh, Diana Rodgers, Melissa Kavanaugh, and F. Leroy, “Considering the Nutritional benefits and Health Implications of Red Meat in the Era of Meatless Initiatives,” Front. Nutr., vol. 12, 2025, doi: https://doi.org/10.3389/fnut.2025.1525011.
A. N. Mafe et al., “A Review on Food Spoilage Mechanisms, Food Borne Diseases and Commercial Aspects of Food Preservation and Processing,” Food Chem. Adv., vol. 5, 2024, doi: https://doi.org/10.1016/j.focha.2024.100852.
N. J. Killa, O. J. Nyarongi, and G. P. Baaro, “Assessment of Meat Preservation Methods Used by Retailers and the Estimation of Direct Economic Losses Associated with Meat Spoilage in Kenya,” J. Food Saf. Hyg., 2024, doi: 10.18502/jfsh.v9i4.14999.
M. Hasan et al., “Framework for Fish Freshness Detection and Rotten Fish Removal in Bangladesh Using Mask R–CNN Method with Robotic Arm and Fisheye Analysis,” J. Agric. Food Res., vol. 16, no. April, p. 101139, 2024, doi: 10.1016/j.jafr.2024.101139.
B. A. Altmann et al., “Human Perception of Color Differences Using Computer Vision System Measurements of Raw Pork Loin,” Meat Sci., vol. 188, 2022, doi: https://doi.org/10.1016/j.meatsci.2022.108766.
L. Fan et al., “Application of Visual Intelligent Labels in the Assessment of Meat Freshness,” Food Chem., vol. 460, 2024, doi: https://doi.org/10.1016/j.foodchem.2024.140562.
M. Adil Raja, R. Loughran, and F. Mc Caffery, “A Review of Performance of Recent YOLO Models on Cholecystectomy Tool Detection,” Meas. Digit., vol. 2–3, p. 100007, 2025, doi: https://doi.org/10.1016/j.meadig.2025.100007.
R. Sapkota et al., “YOLO Advances to its Genesis: a Decadal and Comprehensive Review of the You Only Look Once (YOLO) Series,” Artif. Intell. Rev., vol. 58, no. 9, p. 274, 2025, doi: 10.1007/s10462-025-11253-3.
P. Vilcapoma et al., “Comparison of Faster R-CNN, YOLO, and SSD for Third Molar Angle Detection in Dental Panoramic X-rays,” Sensors, vol. 24, no. 18, 2024, doi: 10.3390/s24186053.
J. Terven, D. M. Córdova-Esparza, and J. A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Mach. Learn. Knowl. Extr., vol. 5, no. 4, pp. 1680–1716, 2023, doi: 10.3390/make5040083.
A. S. Geetha, “YOLOv4: A Breakthrough in Real-Time Object Detection.” 2025. [Online]. Available: https://arxiv.org/abs/2502.04161
D. Sukumarran et al., “An optimised YOLOv4 Deep Learning Model for Efficient Malarial Cell Detection in Thin Blood Smear Images,” Parasit. Vectors, vol. 17, no. 1, p. 188, 2024, doi: 10.1186/s13071-024-06215-7.
I. Ahmad et al., “Deep Learning Based Detector YOLOv5 for Identifying Insect Pests,” Appl. Sci., vol. 12, no. 19, 2022, doi: 10.3390/app121910167.
C. Li et al., “YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications,” Sep. 2022, doi: https://doi.org/10.48550/arXiv.2209.02976.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors,” arXiv, pp. 1–15, Jul. 2022, doi: https://doi.org/10.48550/arXiv.2207.02696.
M. Yaseen, “What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector,” arXiv, vol. 8, pp. 1–10, Aug. 2024, doi: https://doi.org/10.48550/arXiv.2408.15857.
C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information,” arXiv, 2024, doi: 10.1007/978-3-031-72751-1_1.
A. Wang et al., “YOLOv10: Real-Time End-to-End Object Detection,” arXiv, pp. 1–21, May 2024, doi: https://doi.org/10.48550/arXiv.2405.14458.
R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” arXiv, Oct. 2024, doi: https://doi.org/10.48550/arXiv.2410.17725.
E. H. Alkhammash, “A Comparative Analysis of YOLOv9, YOLOv10, YOLOv11 for Smoke and Fire Detection,” Fire, vol. 8, no. 1, 2025, doi: 10.3390/fire8010026.
A. Sharma, V. Kumar, and L. Longchamps, “Comparative Performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN Models for Detection of Multiple Weed Species,” Smart Agric. Technol., vol. 9, 2024, doi: https://doi.org/10.1016/j.atech.2024.100648.
K. Venkatesan, M. Muthulakshmi, B. Prasanalakshmi, E. Karthickeien, H. Pabbisetty, and R. Syarifah Bahiyah, “Comparative Analysis of Resource-Efficient YOLO Models for Rapid and Accurate Recognition of Intestinal Parasitic Eggs in Stool Microscopy,” Intell. Based Med., vol. 11, p. 100212, 2025, doi: 10.1016/j.ibmed.2025.100212.
P. Azevedo and V. Santos, “Comparative Analysis of Multiple YOLO-Based Target Detectors and Trackers for ADAS in Edge Devices,” Rob. Auton. Syst., vol. 171, p. 104558, 2024, doi: 10.1016/j.robot.2023.104558.
L. V Fortin and O. E. Llantos, “Performance Analysis of YOLO Versions for Real-Time Pothole Detection,” Procedia Comput. Sci., vol. 257, pp. 77–84, 2025, doi: 10.1016/j.procs.2025.03.013.
J. Steinbach, J. Vrba, T. Jirsa, M. Cejnek, and Z. Urbániová, “Comparative Analysis of YOLO-based Models for Vocal Cord Segmentation in Laryngoscopic Images,” Procedia Comput. Sci., vol. 246, pp. 4998–5006, 2024, doi: 10.1016/j.procs.2024.09.457.
A. Yudhana, R. Umar, and S. Saputra, “Fish Freshness Identification Using Machine Learning: Performance Comparison of k-NN and Naïve Bayes Classifier,” Journal of Computing Science and Engineering, vol. 16, no. 3. pp. 153–164, 2022. doi: 10.5626/JCSE.2022.16.3.153.
X. Wu et al., “Quality Non-Destructive Sorting of Large Yellow Croaker Based on Image Recognition,” J. Food Eng., vol. 383, no. July, p. 112227, 2024, doi: 10.1016/j.jfoodeng.2024.112227.
O. Jarkas et al., “ResNet and Yolov5-Enabled Non-Invasive Meat Identification for High-Accuracy Box Label Verification,” Eng. Appl. Artif. Intell., vol. 125, no. March, p. 106679, 2023, doi: 10.1016/j.engappai.2023.106679.
X. Liu et al., “BCNO Quantum Dots-Based Ratiometric Fluorescence Platform Integrated with Portable Device: Hypoxanthine Sensing for On-Site Assessment of Meat Freshness with Deep Learning,” Chem. Eng. J., vol. 480, no. August 2023, 2024, doi: 10.1016/j.cej.2023.147917.
E. P. Silmina, T. Hardiani, and S. L. Mahfida, “The Effect of the Number of Classes on the Values Resulting from Evaluation Metrics in the YOLOv5 Model,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 2, pp. 419–425, 2025, doi: 10.18517/ijaseit.15.2.20495.
R. Jian, G. Li, X. Jun, and G. Shi, “Nondestructive Freshness Recognition of Chicken Breast Meat Based on Deep Learning,” Sci. Rep., vol. 15, no. 1, p. 27538, 2025, doi: 10.1038/s41598-025-13576-1.
M. Hou, X. Zhong, O. Zheng, Q. Sun, S. Liu, and M. Liu, “Innovation in Seafood Freshness Quality: Non-Destructive Detection of Freshness in Litopenaeus Vannamei Using the YOLO-shrimp model,” Food Chem., vol. 463, no. P1, p. 141192, Jan. 2025, doi: 10.1016/j.foodchem.2024.141192.
W. X. Sheng Gao, Wei Wang, Yuanmeng Lv, Chenghua Chen, “Intelligent Classification and Identification Method for Conger Myriaster Freshness Based on DWG-YOLOv8 Network Model,” Food Bioeng., vol. 3, no. 3, p. 269‒279, 2024, doi: https://doi.org/10.1002/fbe2.12097.
R. Ye, G. Shao, Q. Gao, H. Zhang, and T. Li, “CR-YOLOv9: Improved YOLOv9 Multi-Stage Strawberry Fruit Maturity Detection Application Integrated with CRNET,” Foods, vol. 13, no. 16, 2024, doi: 10.3390/foods13162571.
D. Wan, R. Lu, T. Xu, S. Shen, X. Lang, and Z. Ren, “Random Interpolation Resize: A Free Image Data Augmentation Method for Object DFetection in Industry,” Expert Syst. Appl., vol. 228, p. 120355, Oct. 2023, doi: 10.1016/j.eswa.2023.120355.
Z. He, K. Wang, T. Fang, L. Su, R. Chen, and X. Fei, “Comprehensive Performance Evaluation of YOLOv11, YOLOv10, YOLOv9, YOLOv8 and YOLOv5 on Object Detection of Power Equipment,” arXiv, 2024, doi: https://doi.org/10.48550/arXiv.2411.18871.
T. Islam, M. S. Hafiz, J. R. Jim, M. M. Kabir, and M. F. Mridha, “A Systematic Review of Deep Learning Data Augmentation in Medical Imaging: Recent Advances and Future Research Directions,” Healthc. Anal., vol. 5, p. 100340, 2024, doi: https://doi.org/10.1016/j.health.2024.100340.
A. Yudhana, E. P. Silmina, and Sunardi, “Deteksi Kesegaran Daging Sapi Menggunakan Augmentasi Data Mosaic pada Model YOLOv5sM Beef Freshness Detection by Using Mosaic Data Augmentation on YOLOv5sM,” J. Ris. Sains dan Teknol., vol. 9, no. 1, pp. 63–71, 2025, doi: https://doi.org/10.30595/jrst.v9i1.24990.
J. Su, X. Yu, X. Wang, Z. Wang, and G. Chao, “Enhanced Transfer Learning with Data Augmentation,” Eng. Appl. Artif. Intell., vol. 129, no. August 2023, 2024.
T. Bahadur, A. Neupane, R. Koech, and K. Walsh, “Detection and Counting of Root-Knot Nematodes Using YOLO Models with Mosaic Augmentation,” Biosens. Bioelectron. X, vol. 15, p. 100407, 2023, doi: 10.1016/j.biosx.2023.100407.
A. A. Murat and M. S. Kiran, “A Comprehensive Review on YOLO Versions for Object Detection,” Eng. Sci. Technol. an Int. J., vol. 70, p. 102161, 2025, doi: https://doi.org/10.1016/j.jestch.2025.102161.
J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A. Ramírez-Pedraza, and E. A. Chávez-Urbiola, “A Comprehensive Survey of Loss Functions and Metrics in Deep Learning,” Artif. Intell. Rev., vol. 58, no. 7, p. 195, 2025, doi: 10.1007/s10462-025-11198-7.
U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection,” Int. J. Comput. Intell. Syst., vol. 16, no. 1, pp. 1–29, 2023, doi: 10.1007/s44196-023-00302-w.
M. L. Ali and Z. Zhang, “The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection,” Computers, vol. 13, no. 12, 2024, doi: 10.3390/computers13120336.
K. V Houde, P. M. Kamble, and R. S. Hegadi, “A Comparative Analysis of IoU-Based Losses with YOLOv8: Fruit Tree Detection from UAV Images,” Procedia Comput. Sci., vol. 260, pp. 898–905, 2025, doi: https://doi.org/10.1016/j.procs.2025.03.272.
K. Su, L. Cao, B. Zhao, N. Li, D. Wu, and X. Han, “N-IoU: better IoU-Based Bounding Box Regression Loss for Object Detection,” Neural Comput. Appl., vol. 36, no. 6, pp. 3049–3063, 2024, doi: 10.1007/s00521-023-09133-4.
X. Qian, N. Zhang, and W. Wang, “Smooth GIoU Loss for Oriented Object Detection in Remote Sensing Images,” Remote Sens., vol. 15, no. 5, 2023, doi: 10.3390/rs15051259.
J. Sánchez-Montejo et al., “AxiWorm: a New Tool Using YOLOv5 to Test Antiparasitic Drugs Against Trichinella Spiralis,” Parasit. Vectors, vol. 18, no. 1, p. 36, Feb. 2025, doi: 10.1186/s13071-025-06664-8.
B. Hussein and S. Shareef, “An Empirical Study on the Correlation between Early Stopping Patience and Epochs in Deep Learning,” ITM Web Conf., vol. 64, Jul. 2024, doi: 10.1051/itmconf/20246401003.
B. A. S. Al-rimy, F. Saeed, M. Al-Sarem, A. M. Albarrak, and S. N. Qasem, “An Adaptive Early Stopping Technique for DenseNet169-Based Knee Osteoarthritis Detection Model,” Diagnostics, vol. 13, no. 11, 2023, doi: 10.3390/diagnostics13111903.
J. Bento, T. Paixão, and A. B. Alvarez, “Performance Evaluation of YOLOv8 , YOLOv9 , YOLOv10 , and YOLOv11 for Stamp Detection in Scanned Documents,” Appl. Sci., vol. 15, no. 6, p. 3154, 2025, doi: https://doi.org/10.3390/app15063154.
F. Wang, “Improving YOLOv11 for Marine Water Quality Monitoring and Pollution Source Identification,” Sci. Rep., vol. 15, no. 1, p. 21367, 2025, doi: https://doi.org/10.1038/s41598-025-04842-3 1.
J. Ferreira and P. Cerqueira, “Food Waste Detection in Canteen Plates Using YOLOv11,” Appl. Sci., vol. 15, no. 13, 2025, doi: https://doi.org/10.3390/app15137137.
R. Sapkota and M. Karkee, “Comparing YOLOV11 and YOLOv8 for Instance Segmentation of Occluded and Non-Occluded Immature Green Fruits in Complex Orchard Environment,” arXiv, pp. 1–17, 2025, doi: https://doi.org/10.48550/arXiv.2410.19869.
R. Khanam, T. Asghar, and M. Hussain, “Comparative Performance Evaluation of YOLOv5 , YOLOv8 , and YOLOv11 for Solar Panel Defect Detection,” Solar, vol. 5, no. 6, pp. 1–25, 2025, doi: https://doi.org/10.3390/solar5010006.
F. Ma et al., “Every Dataset Counts: Scaling up Monocular 3D Object Detection with Joint Datasets Training.” 2024. [Online]. Available: https://arxiv.org/abs/2310.00920
D. Wen et al., “RoHOI: Robustness Benchmark for Human-Object Interaction Detection.” 2025. [Online]. Available: https://arxiv.org/abs/2507.09111
A. Noor, H. Almukhalfi, A. Souza, and T. H. Noor, “Harnessing YOLOv11 for Enhanced Detection of Typical Autism Spectrum Disorder Behaviors Through Body Movements,” Diagnostics, vol. 15, no. 14, 2025, doi: 10.3390/diagnostics15141786.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Esi Putri Silmina, Sunardi Sunardi, Anton Yudhana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.