OPTIMIZATION OF STUNTING INFANT DATA CLUSTERING WITH K-MEANS++ ALGORITHM USING DBI EVALUATION
DOI:
https://doi.org/10.33480/jitk.v11i1.7007Keywords:
Clustering , Davies-Bouldin Index (DBI) , Optimization , StuntingAbstract
Stunting in infants is a serious health issue, particularly in developing countries like Indonesia. This study aims to optimize the clustering of stunting data in infants using the K-Means++ algorithm, evaluated with the Davies-Bouldin Index (DBI) to determine the optimal number of clusters. The stunting data includes variables such as age, gender, weight, and height. The analysis results indicate that the optimal number of clusters is 5, with a DBI value of 0.837986204, confirming the quality of the clustering. This conclusion demonstrates that the combination of these evaluation methods produces effective clustering and provides significant insights into identifying groups of infants with varying stunting risk levels. These findings can serve as a basis for more targeted health interventions in addressing stunting
Downloads
References
N. Puspita Dewi, M. Mariyani, S. Alaydrus, V. Anggi, M. Magfirah, and I. Kurnia Utami, “Penyuluhan Stunting : Upaya Meminimalisir Tingginya Angka Stunting di Desa Sawidago,” J. DiMas, vol. 5, no. 2, pp. 64–67, 2023, doi: 10.53359/dimas.v5i2.69.
R. Khoiriyah, T. Mahmudiono, and S. R. Nadhiroh, “Indirect Determinant Effects of Stunting with Toddler Stunting Incident in Papua New Guinea in 2018,” Amerta Nutr., vol. 8, no. 3, pp. 433–440, 2024, doi: 10.20473/amnt.v8i3.2024.433-440.
A. Syahrin, P. Candriasih, and D. E. Kusumawati, “Gambaran Pengetahuan Stunting pada Ibu Balita Stunting,” Svasta Harena J. Ilm. Gizi, vol. 3, no. 2, pp. 46–51, 2023, doi: https://doi.org/10.33860/shjig.v3i2.3401.
E. Palupi, I. Y. Sari, I. Prawesti, and S. Febrianti, “Menuju Generasi Emas Tanpa Stunting Melalui Edukasi Pencegahan Stunting Pada Ibu Hamil Di Mlatibaru Semarang,” JAMAS J. Abdi Masy., 2024, doi: https://doi.org/10.62085/jms.v2i1.70.
E. Mutiara, N. I. Hasibuan, S. Yunita, K. Saleh, and N. Akmal, “Community Empowerment Through Healthy Kitchens Overcomes Stunting Towards Stunting-Free Villages,” Din. J. Pengabdi. Kpd. Masy., vol. 8, no. 5, pp. 1426–1434, 2024, doi: https://doi.org/10.31849/dinamisia.v8i5.23486.
Hesti Nur Sahadatilah, Hasan Mukmin, Rini Setiawati, and MA Achlami, “Program Dapur Sehat Atasi Stunting (DASHAT) dalam Mempercepat Penurunan Stunting,” Media Publ. Promosi Kesehat. Indones., vol. 6, no. 12, pp. 2599–2604, 2023, doi: 10.56338/mppki.v6i12.4382.
Tugiono, A. Alhafiz, and Hafizah, “Sistem Cerdas Mendiagnosa Stunting pada Anak Menggunakan Mesin Inferensi,” J. Inf. dan Teknol., vol. 4, no. 4, pp. 7–10, 2022, doi: 10.37034/jidt.v4i4.237.
A. U. Rehman, R. M. Saleem, Z. Shafi, M. Imran, M. Pradhan, and H. M. Alzoubi, “Analysis of Income on the Basis of Occupation using Data Mining,” 2022 Int. Conf. Bus. Anal. Technol. Secur. ICBATS 2022, no. February, 2022, doi: 10.1109/ICBATS54253.2022.9759040.
P. Edastama, A. Dudhat, and G. Maulani, “Use of Data Warehouse and Data Mining for Academic Data : A Case Study at a National University,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, pp. 206–215, 2021, doi: 10.34306/ijcitsm.v1i2.55.
J. Yang et al., “Brief introduction of medical database and data mining technology in big data era,” J. Evid. Based. Med., vol. 13, no. 1, pp. 57–69, 2020, doi: 10.1111/jebm.12373.
L. Wei, H. Ma, Y. Yin, and C. Geng, “Kmeans-CM Algorithm with Spectral Angle Mapper for Hyperspectral Image Classification,” IEEE Access, vol. 11, no. March, pp. 26566–26576, 2023, doi: 10.1109/ACCESS.2023.3257859.
Z. Ji, Y. Wang, J. Su, and J. Wu, “Research on insurance policy formulation based on ARIMA-KMEANS algorithm,” Highlights Business, Econ. Manag., vol. 36, pp. 52–58, 2024, doi: 10.54097/491e2j22.
N. Z. Salih and W. Khalaf, “Prediction of student’s performance through educational data mining techniques,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 3, pp. 1708–1715, 2021, doi: 10.11591/ijeecs.v22.i3.pp1708-1715.
S. Siet, S. Peng, S. Ilkhomjon, M. Kang, and D. S. Park, “Enhancing Sequence Movie Recommendation System Using Deep Learning and KMeans,” Appl. Sci., vol. 14, no. 6, 2024, doi: 10.3390/app14062505.
M. Guntara and N. Lutfi, “Optimasi Cacah Klaster pada Klasterisasi dengan Algoritma KMeans Menggunakan Silhouette Coeficient dan Elbow Method,” JuTI “Jurnal Teknol. Informasi,” vol. 2, no. 1, p. 43, 2023, doi: 10.26798/juti.v2i1.944.
W. T. Wu et al., “Data mining in clinical big data: the frequently used databases, steps, and methodological models,” Mil. Med. Res., vol. 8, no. 1, pp. 1–12, 2021, doi: 10.1186/s40779-021-00338-z.
I. Faturohim and A. Baita, “Penerapan Algoritma Kmeans Clustering Untuk Mengelompokkan Kerawanan Rob Di Daerah Pekalongan,” JuTI “Jurnal Teknol. Informasi,” vol. 1, no. 1, p. 12, 2022, doi: 10.26798/juti.v1i1.624.
L. Dong, “Research on online interactive teaching mode of college vocal music based on adaptive Kmeans algorithm,” Appl. Math. Nonlinear Sci., vol. 8, no. 2, pp. 3383–3392, 2023, doi: https://doi.org/10.2478/amns-2024-2873.
M. Gao et al., “Identification Method of Electrical Load for Electrical Appliances Based on K-Means ++ and GCN,” IEEE Access, vol. 9, pp. 27026–27037, 2021, doi: 10.1109/ACCESS.2021.3057722.
M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012128.
F. Nurulhikmah and D. N. E. Abdi, “Classification of Foods Based on Nutritional Content Using K- Means and DBSCAN Clustering Methods,” TEKNIKA, vol. 13, no. November, pp. 481–486, 2024, doi: 10.34148/teknika.v13i3.1067.
A. Fadilah, M. N. Pangestu, S. Lumbanbatu, and S. Defiyanti, “Pengelompokan Kabupaten/Kota Di Indonesia Berdasarkan Faktor Penyebab Stunting Pada Balita Menggunakan Algoritma K-Means,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, p. 223, 2022, doi: 10.26798/jiko.v6i2.581.
N. Sayuti Hanapiah, N. Suarna, and W. Prihartono, “Meningkatkan Penanganan Stunting Pada Anak Melalui Klasifikasi Pemberian Makanan Tambahan Berdasarkan Usia Dengan Metode K-Means Di Desa Cintarasa,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3484–3493, 2024, doi: 10.36040/jati.v7i6.8213.
R. R. Akbar, W. Kartika, and M. Khairunnisa, “The Effect of Stunting on Child Growth and Development,” Sci. J., vol. 2, no. 4, pp. 153–160, 2023, doi: 10.56260/sciena.v2i4.118.
H. Thakkar, V. Shah, H. Yagnik, and M. Shah, “Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis,” Clin. eHealth, vol. 4, no. 2021, pp. 12–23, 2021, doi: 10.1016/j.ceh.2020.11.001.
S. Daoudi, C. M. A. Zouaoui, M. C. El-Mezouar, and N. Taleb, “Parallelization of the K-Means++ clustering algorithm,” Ing. des Syst. d’Information, vol. 26, no. 1, pp. 59–66, 2021, doi: 10.18280/isi.260106.
E. Hassan et al., “A Hybrid K-Means++ and Particle Swarm Optimization Approach for Enhanced Document Clustering,” IEEE Access, vol. 13, no. March, pp. 48818–48840, 2025, doi: 10.1109/ACCESS.2025.3535226.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Efmi Maiyana, Wizra Aulia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.