FACE DETECTION FOR ENTERPRISE RESOURCE PLATFORM ATTENDANCE SYSTEM: A COMPARATIVE ANALYSIS

Authors

  • Suwarno Suwarno Universitas Internasional Batam
  • Mangapul Siahaan Universitas Internasional Batam
  • Delvin Lim Universitas Internasional Batam

DOI:

https://doi.org/10.33480/jitk.v11i1.7009

Keywords:

algorithm comparison, attendance system, computer vision, face detection, odoo erp

Abstract

The demand for face detection capabilities in attendance systems has led to various implementations using different algorithms and Enterprise Resource Planning (ERP) platforms. This research aimed to conduct a comparative analysis of three face detection algorithms—Dlib, Haar-Cascade, and MTCNN (Multi-task Cascaded Convolutional Networks)—and implement the most effective solution in an Odoo-based attendance system supporting multiple face detection. The study employed evaluation methodology analyzing real-time video streams, utilizing distinct datasets: a control dataset under standard conditions and a challenge dataset featuring variations in lighting, occlusions, and multiple simultaneous faces. Performance evaluation was based on true positive, false positive, and false negative rates for face detection across both datasets. Results demonstrated significant performance variations: under controller conditions, MTCNN achieved 99.69% detection accuracy compared to Dlib’s 92.92% and Haar-Cascade’s 84.08%, while in challenging environments, MTCNN maintained 60.93% accuracy versus Dlib’s 0.66% and Haar-Cascade’s 2.36%. The significant performance drop in challenging conditions can be attributed to poor lightning conditions, facial occlusions, and the complexity of detecting multiple faces simultaneously. The findings facilitated the development of a custom Odoo attendance module implementing MTCNN, demonstrating potential for improving automated attendance efficiency in organizations while establishing benchmarks for futher development of face recognition-based features within Odoo ERP.

Downloads

Download data is not yet available.

Author Biographies

Mangapul Siahaan, Universitas Internasional Batam

Information System 

Delvin Lim, Universitas Internasional Batam

Information System

References

M. K. Hasan, M. S. Ahsan, Abdullah-Al-Mamun, S. H. S. Newaz, and G. M. Lee, “Human face detection techniques: A comprehensive review and future research directions,” Electronics (Switzerland), vol. 10, no. 19, Oct. 2021, doi: 10.3390/electronics10192354.

Y. Zhong, S. Oh, and H. C. Moon, “Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model,” Technol Soc, vol. 64, Feb. 2021, doi: 10.1016/j.techsoc.2020.101515.

Y. Yusmanto, H. Ar Rosyid, and A. Prasetya Wibawa, “Design and development of face recognition-based security system using expression game as liveness detection,” Bulletin of Social Informatics Theory and Application, vol. 8, no. 2, pp. 280–294, Dec. 2024, doi: 10.31763/businta.v8i2.756.

H. T. Ho, L. Vuong Nguyen, T. Le Thi Huong, and O. J. Lee, “Face Detection Using Eigenfaces: A Comprehensive Review,” 2024, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2024.3435964.

N. Singh and R. M. Brisilla, “Comparison Analysis of Different Face Detecting Techniques,” in 3rd IEEE International Virtual Conference on Innovations in Power and Advanced Computing Technologies, i-PACT 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/i-PACT52855.2021.9696583.

N. S. Ali, A. H. Alhilali, H. D. Rjeib, H. Alsharqi, and B. Al-Sadawi, “Automated attendance management systems: systematic literature review,” 2022, Inderscience Publishers. doi: 10.1504/IJTEL.2022.120559.

E. Jain and S. Mishra, “Face Recognition Attendance System based on Real-Time Video,” Int J Comput Appl, vol. 184, no. 6, pp. 12–18, Apr. 2022, doi: 10.5120/ijca2022921983.

T. V. Dang, “Smart Attendance System based on Improved Facial Recognition,” Journal of Robotics and Control (JRC), vol. 4, no. 1, pp. 46–53, Jan. 2023, doi: 10.18196/jrc.v4i1.16808.

V. Chin and H. Lukman, “Evaluasi Pelaporan Keuangan Sistem ERP Odoo Community yang Dikembangkan PT Neo Multi Servindo,” Jurnal Ekonomi, vol. 27, no. 3, pp. 224–241, 2022, doi: https://doi.org/10.24912/je.v27i03.874.

K. N. Mefid and A. I. Ahlunnazak, “Odoo-ERP as a Solution to Business Performance in Supply Chain of the Coffee Industry: A Systematic Literature Review,” Jurnal Manajemen Strategi dan Simulasi Bisnis (JMASSBI), vol. 4, no. 2, pp. 69–81, 2023, doi: https://doi.org/10.25077/mssb.4.2.69-81.2023.

M. Siahaan, “Perancangan Enterprise Architecture Sistem Informasi Menggunakan Framework TOGAF ADM 9.2 PT. XYZ,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 10, no. 1, pp. 141–149, Apr. 2021, doi: 10.32736/sisfokom.v10i1.1087.

H. Fatoni Efendi and A. Aditya, “Business Process Analysis and Implementation of Odoo Open Source ERP System in Inventory, Purchasing and Sales Activities (Case Study: Captain Gadget Store),” 2022. [Online]. Available: https://pssh.umsida.ac.id.

S. Reddy Boyapally, “Facial Recognition and Attendance System using Dlib and Face Recognition Libraries,” International Research Journal of Modernization in Engineering Technology and Science, pp. 409–417, 2021, Accessed: Jul. 13, 2025. [Online]. Available: SSRN 3804334

T. Tan, H. Sama, G. Wijaya, and O. E. Aboagye, “Studi Perbandingan Deteksi Intrusi Jaringan Menggunakan Machine Learning: (Metode SVM dan ANN) Comparative Study of Network Intrusion Detection Using Machine Learning: (SVM and ANN Method),” vol. 13, 2023, doi: 10.34010/jati.v13i2.

Ubong David Essien and Godwin Okon Ansa, “A deep learning-based face recognition attendance system,” Global Journal of Engineering and Technology Advances, vol. 17, no. 1, pp. 009–022, Oct. 2023, doi: 10.30574/gjeta.2023.17.1.0165.

R. Bairagi, R. Ahmed, S. A. Tisha, M. S. Sarder, M. S. Islam, and M. A. Islam, “A Real-time Face Recognition Smart Attendance System with Haar Cascade Classifiers,” in Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, Institute of Electrical and Electronics Engineers Inc., Sep. 2021, pp. 1417–1425. doi: 10.1109/ICIRCA51532.2021.9544872.

P. Venkateswara Rao, G. S. Ramesh, S. Rashmitha, and A. Professor, “Real-Time Multiple Face Detection using MTCNN,” Industrial Engineering Journal, vol. 52, no. 8, pp. 305–320, 2023.

H. Ge, Y. Dai, Z. Zhu, and B. Wang, “Robust face recognition based on multi-task convolutional neural network,” Mathematical Biosciences and Engineering, vol. 18, no. 5, pp. 6638–6651, 2021, doi: 10.3934/mbe.2021329.

S. Singh Oberoi, “Facial Feature Detection in Real-Time: A Novel Approach with MTCNN Deep Learning,” Int. J. Advanced Networking and Applications, vol. 15, no. 4, pp. 6076–6081, 2023.

J. Yuan, P. Barmpoutis, and T. Stathaki, “Pedestrian Detection Using Integrated Aggregate Channel Features and Multitask Cascaded Convolutional Neural-Network-Based Face Detectors,” Sensors, vol. 22, no. 9, May 2022, doi: 10.3390/s22093568.

A. K. Feroz, H. Zo, and A. Chiravuri, “Digital transformation and environmental sustainability: A review and research agenda,” Sustainability (Switzerland), vol. 13, no. 3, pp. 1–20, Feb. 2021, doi: 10.3390/su13031530.

Y. G. Sungkur, A. M. S. Ozeer, and S. D. Nagowah, “Development of an IoT-enabled Smart Library System for a University Campus,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 13, no. 1, pp. 27–36, 2021.

S. Liang and Y. Hartanto, “Implementasi Bug Tracking System dengan Metodologi Scrum dan Algoritma Cosine Similarity,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 24, Feb. 2022, doi: 10.30865/jurikom.v9i1.3861.

Suwarno, Y. Christian, K. Yoputra, and Y. Estrada, “Exploring Machine Learning to Support Software Managers’ Insights on Software Developer Productivity,” Journal of Applied Data Sciences, vol. 6, no. 3, pp. 1504–1524, Sep. 2025, doi: 10.47738/jads.v6i3.661.

R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. Da Silva, “A comparative analysis of object detection metrics with a companion open-source toolkit,” Electronics (Switzerland), vol. 10, no. 3, pp. 1–28, Feb. 2021, doi: 10.3390/electronics10030279.

L. Jiao et al., “New Generation Deep Learning for Video Object Detection: A Survey,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 8, pp. 3195–3215, Aug. 2022, doi: 10.1109/TNNLS.2021.3053249.

H. Peng and S. Yu, “A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization,” IEEE Transactions on Image Processing, vol. 30, pp. 5032–5044, 2021, doi: 10.1109/TIP.2021.3077144.

M. Ahmed, K. A. Hashmi, A. Pagani, M. Liwicki, D. Stricker, and M. Z. Afzal, “Survey and performance analysis of deep learning based object detection in challenging environments,” Aug. 01, 2021, MDPI AG. doi: 10.3390/s21155116.

W. Ali, W. Tian, S. U. Din, D. Iradukunda, and A. A. Khan, “Classical and modern face recognition approaches: a complete review,” Multimed Tools Appl, vol. 80, no. 3, pp. 4825–4880, Jan. 2021, doi: 10.1007/s11042-020-09850-1.

H. L. Gururaj, B. C. Soundarya, S. Priya, J. Shreyas, and F. Flammini, “A Comprehensive Review of Face Recognition Techniques, Trends, and Challenges,” IEEE Access, vol. 12, pp. 107903–107926, 2024, doi: 10.1109/ACCESS.2024.3424933.

A. Dzaki Hernindyaputra, M. E. Johan, and D. Tjahjana, “Integrated System Design Of Sales And Production Module Using RAD Method (Case Study: PT Shafira Putri Kreatif),” International Journal of New Media Technology), vol. 10, no. 1, 2023, doi: https://doi.org/10.31937/ijnmt.v10i1.3012.

M. R. G. Qowindra and J. Wiratama, “Development of Enterprise Resource Planning (ERP) using the Rapid Application Development (RAD) Method for the Garment Industry in Indonesia,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 2, pp. 504–513, Mar. 2023, doi: 10.33379/gtech.v7i2.2296.

Y. A. Singgalen, “Implementation of Rapid Application Development (RAD) for Community-based Ecotourism Monitoring System,” Journal of Information System Research (JOSH), vol. 5, no. 2, pp. 520–530, Jan. 2024, doi: 10.47065/josh.v5i2.4749.

M. F. T. Nugraha, A. Kusnadi, and F. A. T. Tobing, “Implementation of the Rapid Application Method Development (RAD) in Clothes Sale Website Design,” Engineering and Technology Quarterly Reviews, vol. 6, no. 2, pp. 10–18, 2023.

F. M. Javed et al., “Human Face Recognition Applying Haar Cascade Classifier ‘Image Processing Based Human Face Recognition Using Haar Cascade Classifier’ Image Processing Based Human Face Recognition Using Haar Cascade Classifier. Pre-Print,” 2021.

M. F. I. Khan, F. U. Mahmud, and A. Hoseen, “A New Approach of Software Test Automation using AI,” Journal Of Basic Science And Engineering, vol. 21, no. 1, pp. 559–570, 2024.

Downloads

Published

2025-08-30

How to Cite

[1]
S. Suwarno, M. Siahaan, and D. Lim, “FACE DETECTION FOR ENTERPRISE RESOURCE PLATFORM ATTENDANCE SYSTEM: A COMPARATIVE ANALYSIS”, jitk, vol. 11, no. 1, pp. 266–274, Aug. 2025.