SENTIMENT ANALYSIS OF IT WORKERS ON NO CODE AND LOW CODE TRENDS: COMPARISON OF LSTM AND SVM MODELS

Authors

DOI:

https://doi.org/10.33480/jitk.v11i2.7166

Keywords:

artificial intelligence , lowcode development , no-code development , sentiment analysis , social media

Abstract

This research explores the sentiment of IT professionals toward the growing trend of No Code and Low Code technologies by comparing the performance of Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) algorithms. Using the SEMMA methodology and automatic labeling with ChatGPT, a total of 4,238 comments were collected from Reddit and Twitter and categorized into positive, neutral, and negative sentiments. The analysis showed that neutral sentiment dominates on both platforms (47.9% on Reddit and 48.8% on Twitter), followed by positive sentiment (41.3% and 43.1%, respectively), indicating cautious but optimistic attitudes toward LCDPs. In terms of model performance, SVM outperformed LSTM with 87% accuracy and a weighted F1-score of 0.87, compared to LSTM’s 80% accuracy and a weighted F1-score of 0.80. These findings confirm that classical machine learning methods remain highly effective for short-text sentiment analysis in social media, particularly when combined with TF-IDF feature representation, SMOTE balancing, and LLM-based automatic labeling, while also offering new insights into IT community perceptions of disruptive technologies

Downloads

Download data is not yet available.

References

B. Bodicherla, “The Rise of Low-Code/No-Code Development: Democratizing Application Development,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 11, no. 2, Art. no. 2, Mar. 2025, doi: 10.32628/CSEIT251112398.

S. Parimi, “Impact of Low-Code/No-Code Platforms,” ResearchGate. Accessed: Apr. 19, 2025. [Online]. Available: https://www.researchgate.net/publication/388931508_Impact_of_Low-CodeNo-Code_Platforms

M. Taunk, “No Code Statistics - Market Growth & Predictions (Updated 2025).” Accessed: Apr. 15, 2025. [Online]. Available: https://codeconductor.ai/blog/no-code-statistics/

OutSystems, “New Research Highlights AI and Low-Code Synergy Accelerating Application Development in Asia-Pacific - PR Newswire APAC.” Accessed: May 30, 2025. [Online]. Available: https://en.prnasia.com/story/467249-0.shtml

CIO Insight Hub, “The Hidden Dangers of Low-Code/No-Code Platforms: Understanding Security Risks,” CIO Insight Hub. Accessed: Apr. 15, 2025. [Online]. Available: https://ciohub.org/post/2023/03/low-code-no-code-platform-security-risks/

M. O. Ajimati, N. Carroll, and M. Maher, “Adoption of low-code and no-code development: A systematic literature review and future research agenda,” Journal of Systems and Software, vol. 222, p. 112300, Apr. 2025, doi: 10.1016/j.jss.2024.112300.

M. Obaidi, L. Nagel, A. Specht, and J. Klünder, “Sentiment Analysis Tools in Software Engineering: A Systematic Mapping Study,” Information and Software Technology, vol. 151, p. 107018, Nov. 2022, doi: 10.1016/j.infsof.2022.107018.

M. S. Ahmed, D. Park, and N. U. Eisty, “Sentiment Analysis of ML Projects: Bridging Emotional Intelligence and Code Quality,” Sep. 26, 2024, arXiv: arXiv:2409.17885. doi: 10.48550/arXiv.2409.17885.

T. Zhang, I. C. Irsan, F. Thung, and D. Lo, “Revisiting Sentiment Analysis for Software Engineering in the Era of Large Language Models,” Sep. 07, 2024, arXiv: arXiv:2310.11113. doi: 10.48550/arXiv.2310.11113.

Asnawiyah and R. E. Putra, “Perbandingan Algoritma LSTM dan BiLSTM Untuk Analisis Sentimen Multi-Class Media Sosial Twitter,” Journal of Informatics and Computer Science (JINACS), pp. 778–786, Jan. 2024.

M. Ula and S. Fachrurrazi, “Analisis Sentimen Cyberbullying pada Media Sosial Twitter menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier,” techsi, vol. 14, no. 2, p. 91, Dec. 2023, doi: 10.29103/techsi.v14i2.12103.

Z. Wang, Q. Xie, Y. Feng, Z. Ding, Z. Yang, and R. Xia, “Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study,” Feb. 17, 2024, arXiv: arXiv:2304.04339. doi: 10.48550/arXiv.2304.04339.

M. Vuyyuru, “Emotion Detection from Text: A SEMMA Methodology Approach,” Medium. Accessed: Apr. 19, 2025. [Online]. Available: https://medium.com/@moukthikareddy.vuyyuru/title-emotion-detection-from-text-a-semma-methodology-approach-eddf2797a67a

O. Firas, “A combination of SEMMA & CRISP-DM models for effectively handling big data using formal concept analysis based knowledge discovery: A data mining approach.” Accessed: Apr. 19, 2025. [Online]. Available: https://www.researchgate.net/publication/367543011_A_combination_of_SEMMA_CRISP-DM_models_for_effectively_handling_big_data_using_formal_concept_analysis_based_knowledge_discovery_A_data_mining_approach

M. Das, S. Kamalanathan, and P. Alphonse, “A Comparative Study on TF-IDF feature Weighting Method and its Analysis using Unstructured Dataset,” 2021.

D. E. Cahyani and I. Patasik, “Performance comparison of TF-IDF and Word2Vec models for emotion text classification,” Bulletin EEI, vol. 10, no. 5, pp. 2780–2788, Oct. 2021, doi: 10.11591/eei.v10i5.3157.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, pp. 147–156, Feb. 2021, doi: 10.25126/jtiik.0813944.

H. P. P. Zuriel and A. Fahrurozi, “IMPLEMENTASI ALGORITMA KLASIFIKASI SUPPORT VECTOR MACHINE UNTUK ANALISA SENTIMEN PENGGUNA TWITTER TERHADAP KEBIJAKAN PSBB,” Jurnal Ilmiah Informatika Komputer, vol. 26, no. 2, Art. no. 2, Aug. 2021, doi: 10.35760/ik.2021.v26i2.4289.

H. Okut, “Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory,” in Deep Learning Applications, P. Luigi Mazzeo and P. Spagnolo, Eds., IntechOpen, 2021. doi: 10.5772/intechopen.96180.

K. K. Dewi and S. Winiarti, “Analisis Sentimen Menggunakan Long Short-Term Memory Terkait Vaksinasi Covid-19 Di Indonesia,” JSTIE, vol. 11, no. 3, p. 124, Oct. 2023, doi: 10.12928/jstie.v11i3.27188.

S. Shao, “Enhancing Sentiment Analysis with a CNN-Stacked LSTM Hybrid Model,” ITM Web Conf., vol. 70, p. 02002, 2025, doi: 10.1051/itmconf/20257002002.

M. Belal, J. She, and S. Wong, “Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis,” Jun. 18, 2023, arXiv: arXiv:2306.17177. doi: 10.48550/arXiv.2306.17177.

M. Sitarz, “Extending F1 metric, probabilistic approach,” AAIML, vol. 03, no. 02, pp. 1025–1038, 2023, doi: 10.54364/AAIML.2023.1161.

Downloads

Published

2025-11-27

How to Cite

[1]
Y. H. Agustin and Nabil Nur Afrizal, “SENTIMENT ANALYSIS OF IT WORKERS ON NO CODE AND LOW CODE TRENDS: COMPARISON OF LSTM AND SVM MODELS”, jitk, vol. 11, no. 2, pp. 317–333, Nov. 2025.