IMPLEMENTATION OF RANDOM FOREST FOR ANIMAL PROTEIN CLASSIFICATION THROUGH HYPERPARAMETER OPTIMIZATION
DOI:
https://doi.org/10.33480/jitk.v11i3.7613Keywords:
Animal Protein, Classification, Machine Learning, Accuracy, Random ForestAbstract
Accurate identification of animal protein types is crucial to ensure food authenticity and safety, particularly in the context of compliance with halal principles. This study aims to implement the Random Forest (RF) algorithm to classify four types of animal protein—broiler chicken, free-range chicken, pork, and beef through hyperparameter optimization using GridSearchCV. The dataset was evaluated using 5-fold cross-validation, and feature importance analysis was conducted to identify the variables that contributed most to classification. Results showed that RF with optimized hyperparameters achieved a test accuracy of 92.81%, with macro-average precision, recall, and F1-score of 93%. The model performed best for the broiler chicken and pork classes, while the beef class exhibited a higher misclassification rate, likely due to the similarity of spectral characteristics among classes. ODOR, CO₂, H₂, NH₃, and VOC were identified as the key indicators for distinguishing animal protein types. This study contributes to halal authentication by integrating FTIR spectral data with optimized Random Forest, enabling efficient and accurate classification. Although RF proved reliable and capable of handling high-dimensional data, the study is limited by dataset size and spectral feature complexity. Future research is recommended to explore deep learning architectures, such as Convolutional Neural Networks (CNN), with larger FTIR datasets to improve model generalization and robustness
Downloads
References
[1] A. M. Rueda García, P. Fracassi, B. D. Scherf, M. Hamon, and L. Iannotti, “Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems,” Nutrients, vol. 16, no. 19, p. 3346, Oct. 2024, doi: 10.3390/nu16193346.
[2] V. Miller et al., “Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database,” Lancet Planet Health, vol. 6, no. 3, pp. e243–e256, Mar. 2022, doi: 10.1016/S2542-5196(21)00352-1.
[3] T. Beal et al., “Friend or Foe? The Role of Animal-Source Foods in Healthy and Environmentally Sustainable Diets,” J Nutr, vol. 153, no. 2, pp. 409–425, Feb. 2023, doi: 10.1016/j.tjnut.2022.10.016.
[4] P. W. Harlina, V. Maritha, I. Musfiroh, S. Huda, N. Sukri, and M. Muchtaridi, “Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review,” Food Sci Anim Resour, vol. 42, no. 5, pp. 744–761, Sep. 2022, doi: 10.5851/kosfa.2022.e37.
[5] M. M. Rahman, M. S. A. Razimi, A. S. Ariffin, and N. Hashim, “Navigating moral landscape: Islamic ethical choices and sustainability in Halal meat production and consumption,” Discover Sustainability, vol. 5, no. 1, p. 225, Aug. 2024, doi: 10.1007/s43621-024-00388-y.
[6] S. R. Aini et al., “The metabolomics approach used for halal authentication analysis of food and pharmaceutical products: a review,” Food Res, vol. 7, no. 3, pp. 180–187, Jun. 2023, doi: 10.26656/fr.2017.7(3).986.
[7] H. Zhang, N. Wisuthiphaet, H. Cui, N. Nitin, X. Liu, and Q. Zhao, “Spectroscopy Approaches for Food Safety Applications: Improving Data Efficiency Using Active Learning and Semi-Supervised Learning,” Feb. 2022, doi: 10.48550/arXiv.2110.03765.
[8] R. L. A. Sitorus, “A Comprehensive Overview Of Near Infrared And Infrared Spectroscopy For Detecting The Adulteration On Food And Agro-Products—A Critical Assessment,” INMATEH Agricultural Engineering, pp. 465–486, Aug. 2022, doi: 10.35633/nmateh-67-47.
[9] A. Yudhana, E. P. Silmina, and Sunardi, “Deteksi Kesegaran Daging Sapi Menggunakan Augmentasi Data Mosaic pada Model YOLOv5sM,” JRST (Jurnal Riset Sains dan Teknologi), pp. 63–71, Apr. 2025, doi: 10.30595/jrst.v9i1.24990.
[10] M. Pirhadi, N. Shariatifar, S. Pirhadi, S. M. Khodaei, and Y. Mazaheri, “Developing Infrared Spectroscopy Methods for Identification of Food Fraud and Authenticity: A Review,” Journal of Biochemicals and Phytomedicine, vol. 3, no. 1, pp. 59–65, Jun. 2024, doi: 10.34172/jbp.2024.12.
[11] A. Kazemi, A. Mahmoudi, and M. Khojastehnazhand, “Detection of Adulteration of Ground Meat by Spectral-based Techniques and Artificial Intelligence (2020-2024),” Iranian Food Science and Technology Research Journal, vol. 20, no. 6, pp. 201–224, Feb. 2025, doi: 10.22067/ifstrj.2024.88158.1335.
[12] D. Ghosh and J. Cabrera, “Enriched Random Forest for High Dimensional Genomic Data,” IEEE/ACM Trans Comput Biol Bioinform, vol. 19, no. 5, pp. 2817–2828, Sep. 2022, doi: 10.1109/TCBB.2021.3089417.
[13] A. Mustapha, I. Ishak, N. N. M. Zaki, M. R. Ismail-Fitry, S. Arshad, and A. Q. Sazili, “Application of machine learning approach on halal meat authentication principle, challenges, and prospects: A review,” Heliyon, vol. 10, no. 12, p. e32189, Jun. 2024, doi: 10.1016/j.heliyon.2024.e32189.
[14] M. A. Siddiqui et al., “Multivariate analysis coupled with m-svm classification for lard adulteration detection in meat mixtures of beef, lamb, and chicken using ftir spectroscopy,” Foods, vol. 10, no. 10, Oct. 2021, doi: 10.3390/foods10102405.
[15] A. Dashti et al., “Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques,” Microchemical Journal, vol. 181, p. 107735, Oct. 2022, doi: 10.1016/j.microc.2022.107735.
[16] L. A. Putri et al., “Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication,” NPJ Sci Food, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41538-023-00205-2.
[17] M. R. Ardianto and R. Rushendra, “Prediksi Penyakit Diabetes Berdasarkan Perbandingan Klasifikasi Metode K-Nearest Neighbor, Naïve Bayes, Dan Decision Tree Menggunakan Rapid Miner,” vol. 10, no. 2, pp. 973–985, 2025, doi: 10.29100/jipi.v10i2.6079.
[18] S. Saifullah et al., “Nondestructive Chicken Egg Fertility Detection Using CNN-Transfer Learning Algorithms,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 3, pp. 854–871, Sep. 2023, doi: 10.26555/jiteki.v9i3.26722.
[19] A. Pranolo, S. Saifullah, A. Bella Utama, A. Prasetya Wibawa, M. Bastian, and C. P. Hardiyanti, “High-performance traffic volume prediction: An evaluation of RNN, GRU, and CNN for accuracy and computational trade-offs,” in BIO Web of Conferences, EDP Sciences, Jan. 2025. doi: 10.1051/bioconf/202414802034.
[20] Rio Subandi, Herman, and Anton Yudhana, “Pre-Processing Pada Klasifikasi Citra Medis Pneumonia,” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 1, pp. 86–93, Nov. 2023, doi: 10.51454/decode.v4i1.198.
[21] E. Ismanto, A. Fadlil, and A. Yudhana, “Analisis Perbandingan Model Fully Connected Neural Networks (FCNN) dan TabNet Untuk Klasifikasi Perawatan Pasien Pada Data Tabular Comparative Analysis of Fully Connected Neural Networks (FCNN) and TabNet Models for Patient Care Classification on Tabular Data,” vol. 5, no. 3, pp. 526–532, 2024, doi: 10.37859/coscitech.v5i3.8256.
[22] E. Poerwandono and J. Perwitosari, “Penerapan Data Mining Untuk Penilaian Kinerja Karyawan Di PT. Riksa Dinar DJaya Menggunakan Metode Naïve Bayes Classification (Edhy Poerwandono 1 , Faizal Joko Perwitosari 2 ) Penerapan Data Mining Untuk Penilaian Kinerja Karya Di PT Riksa Dinar Djaya Menggunakan Metode Naive Bayes Classification,” Jurnal Sains dan Teknologi, vol. 5, no. 1, p. |pp, 2023, doi: 10.55338/saintek.v5i1.1416.
[23] L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.
[24] M. Ibrahim, “Evolution of Random Forest from Decision Tree and Bagging: A Bias-Variance Perspective,” Dhaka University Journal of Applied Science and Engineering, vol. 7, no. 1, pp. 66–71, Feb. 2023, doi: 10.3329/dujase.v7i1.62888.
[25] M. A. Ganaie, M. Tanveer, P. N. Suganthan, and V. Snasel, “Oblique and rotation double random forest,” Neural Networks, vol. 153, pp. 496–517, Sep. 2022, doi: 10.1016/j.neunet.2022.06.012.
[26] Nimatul Mamuriyah, Richard, and Haeruddin, “Implementation Mean Imputation And Outlier Detection For Loan Prediction Using The Random Forest Algorithm,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 4, pp. 937–944, Jun. 2025, doi: 10.33480/jitk.v10i4.6437.
[27] F. Yasin, M. Raafi’u Firmansyah, D. Aldo, and M. A. Amrustian, “Multivariate Forecasting of Paddy Production: A Comparative Study of Machine Learning Models,” Jurnal Teknik Informatika (JUTIF), vol. 6, no. 3, pp. 2723–3863, 2025, doi: 10.52436/1.jutif.2025.6.3.4681.
[28] A. F. AlShammari, “Implementation of Model Evaluation Using Confusion Matrix in Python,” Int J Comput Appl, vol. 186, no. 50, pp. 42–48, Nov. 2024, doi: 10.5120/ijca2024924236.
[29] N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3216.
[30] J. Bleicher, E. E. Ebner, and K. H. Bak, “Formation and Analysis of Volatile and Odor Compounds in Meat—A Review,” Oct. 01, 2022, MDPI. doi: 10.3390/molecules27196703.
[31] J. K. Seo, J. U. Eom, and H. S. Yang, “Application of volatilomics for meat quality, authenticity, and adulteration detection,” Dec. 01, 2025, Elsevier B.V. doi: 10.1016/j.afres.2025.101182.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ridho Ikhram, Anton Yudhana, Imam Riadi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






-a.jpg)
-b.jpg)











