Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Since the positive case of covid-19 in Indonesia, the government has taken several policies with the purpose of controlling the spread of the covid-19 virus, which has been regulated in Government Regulation No. 21 of 2020. The purpose of research is to obtain a model of government policy in controlling cases of covid by using data mining classification techniques, and obtain attributes that have the greatest weight, as well as look at the impact of policies that have been carried out by the government on the cases of covid-19 in Indonesia. The methodology used in the research is Knowledge Discovery In Database (KDD). Based on the research that has been done, it can be concluded that the policies that have been done by the government in controlling cases of covid-19 can be said to be successful, the C4.5 algorithm is the algorithm that gives the best results compared to the Deep Learning algorithm, as well as the attribute that has the greatest weight is cancel public events. Secondary data will be used in this research.
Amelia, Y., Eosina, P., & Setiawan, F. A. (2018). Perbandingan Metode Deep Learning Dan Machine Learning Untuk Klasifikasi (Uji Coba Pada Data Penyakit Kanker Payudara). Seminar Nasional Teknologi Informasi, 1, 789–796.
Anung Ahadi Pradana, Casman, N. (2020). Pengaruh Kebijakan Social Distancing pada Wabah COVID-19 terhadap Kelompok Rentan di Indonesia. Jurnal Kebijakan Kesehatan Indonesia : JKKI, 9(2), 61–67. Retrieved from https://jurnal.ugm.ac.id/jkki/article/view/55575
Bahri, S., Marisa Midyanti, D., Hidayati, R., Sistem Komputer, J., & Mipa, F. (2018). Perbandingan Algoritma Naive Bayes dan C4.5 Untuk Klasifikasi Penyakit Anak. Seminar Nasional Aplikasi Teknologi Informasi (SNATi), 24–31.
Benhar, H., Idri, A., & L Fernández-Alemán, J. (2020). Data preprocessing for heart disease classification: A systematic literature review. Computer Methods and Programs in Biomedicine (Vol. 195). https://doi.org/10.1016/j.cmpb.2020.105635
Gorunescu, F. (2011). Data Mining Concepts, Models and Technique. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19721-5
Hijrah, Mukhlizar, M., & Pandria, T. M. A. (2020). Perbandingan Teknik Klasifikasi Untuk Memprediksi Kualitas Kinerja Karyawan. Jurnal Optimalisasi, 6(1), 10–21. Retrieved from http://jurnal.utu.ac.id/joptimalisasi/article/view/1990
Ibrahim, D. (2017). Analisis Hubungan antar Faktor dan Komparasi Algoritma Klasifikasi pada Penentuan Penundaan Penerbangan. Senit, (September), 15–17.
Idri, A., Benhar, H., Fernández-Alemán, J. L., & Kadi, I. (2018). A systematic map of medical data preprocessing in knowledge discovery. Computer Methods and Programs in Biomedicine, 162, 69–85. https://doi.org/10.1016/j.cmpb.2018.05.007
Lengkong, N. C., Safitri, O., Machsus, S., Putra, Y. R., Syahadati, A., & Nooraeni, R. (2021). Analisis Sentimen Penerapan Psbb Di Dki Jakarta Dan Dampaknya Terhadap Pergerakan Ihsg. Jurnal Teknoinfo, 15(1), 20. https://doi.org/10.33365/jti.v15i1.866
Murphree, D. H., Puri, P., Shamim, H., Bezalel, S. A., Drage, L. A., Wang, M., … Comfere, N. (2020). Deep Learning for Dermatologists: Part I Fundamental Concepts. Journal of the American Academy of Dermatology. https://doi.org/10.1016/j.jaad.2020.05.056
Mutrofin, S., Machfud, M. M., Satyareni, D. H., Ginardi, R. V. H., & Fatichah, C. (2020). Komparasi Kinerja Algoritma C4.5, Gradient Boosting Trees, Random Forests, dan Deep Learning pada Kasus Educational Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 807. https://doi.org/10.25126/jtiik.2020742665
Noviandi. (2018). Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes. Inohim, 6(1), 1–5.
Oxford University. (2021). Coronavirus Government Response Tracker | Blavatnik School of Government (ox.ac.uk). Retrieved February 26, 2021, from https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
Parhusip, H. A. (2020). Study on COVID-19 in the World and Indonesia Using Regression Model of SVM, Bayesian Ridge and Gaussian. Jurnal Ilmiah Sains, 20(2), 49. https://doi.org/10.35799/jis.20.2.2020.28256
Rohman, A., Suhartono, V., & Supriyanto, C. (2017). Penerapan Agoritma C4.5 Berbasis Adaboost Untuk Prediksi Penyakit Jantung. Jurnal Teknologi Informasi, 13, 13–19.
Santosa, B., & Ardian, U. (2018). Data Mining dan Big Data Analytics. Yogyakarta: Penebar Media Pustaka.
Wahono, H., & Riana, D. (2020). Prediksi Calon Pendonor Darah Potensial Dengan Algoritma Naïve Bayes, K-Nearest Neighbors dan Decision Tree C4.5. JURIKOM (Jurnal Riset Komputer), 7(1), 7. https://doi.org/10.30865/jurikom.v7i1.1953
Copyright (c) 2021 Ultach Enri, Eka Puspita Sari
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.