Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Data mining is a process to obtain useful information from a database warehouse in the form of knowledge. Data transaction history of sales can be information for a business decision. Toko Usaha Mandiri has a problem with the stock of goods, and there are passive goods that settle in the warehouse for a relatively long period. Previous research conducted data analysis to form data clustering into useful information. This study aims to analyze sales data by applying the K-Means Clustering algorithm to form sales clusters. The results of data clustering form cluster1, cluster2 and cluster3 with percentage values of 62% (11 data), 8% (56 data) and 30% (25 data), respectively. Cluster validation of K-Means Clustering algorithm with Davies Bouldin Index produces a value of 0.2. The information of sales clustering can be an alternative solution, input for stock management and marketing strategies.
Adiya, M. H., & Desnelita, Y. (2019). National Journal of Technology and Information Systems Application of K-Means Algorithm For Clustering Drug Data at Pekanbaru Hospital. National Technology and Information Systems, 01, 17–24.
Butsianto, S., & Saepudin, N. (2020). Application of Data Mining To Students' Interest in Mathematics Subjects With K-Means Method. National Journal of Computing and Information Technology (JNKTI), 3(1), 51–59. https://doi.org/10.32672/jnkti.v3i1.2008
Fithri, F. A., & Wardhana, S. (2021). Cluster Analysis Of Sales Transaction Data Using K-Means Clustering At Toko Usaha Mandiri. 17(2), 1–7. https://doi.org/10.33480/pilar.v17i2.2273
Handoko, K. (2018). Grouping Mining Data on The Number of Passengers at Hang Nadim Airport. Computer-Based Information System Journal, 6(2), 60. https://doi.org/10.33884/cbis.v6i2.708
Hutabarat, S.M., & Sindar, A. (2019). Data Mining Of Motorcycle Parts Sales Using K-Means Algorithm. National Journal of Computing and Information Technology (JNKTI), 2(2), 126. https://doi.org/10.32672/jnkti.v2i2.1555
Indriyani, F., & Irfiani, E. (2019). Clustering Sales Data at Outdoor Supply Stores Using the K-Means Method. JUITA: Journal of Informatics, 7(2), 109. https://doi.org/10.30595/juita.v7i2.5529
Noviyanto. (2020). Application of Data Mining in Grouping The Number of Deaths. Paradigm-Journal of Informatics and Computers, 22(2).
Rofiqo, N., Windarto, A. P., & Hartama, D. (2018). Application of Clustering in Residents Who Have Health Complaints With K-Means Datamining. KOMIK (National Conference on Information and Computer Technology), 2(1), 216–223. https://doi.org/10.30865/komik.v2i1.929
Setiawan, S. (2018). Utilization of K-Means Method in Determining Inventory of Goods. PIXELS: Research in Computer Science embedded systems and logic, 6(1), 41–48. https://doi.org/10.33558/piksel.v6i1.1398
Sibuea, M. L., & Safta, A. (2017). Mapping Outstanding Students Using the K-Means Clustering Method. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Siregar, M. H. (2018). Data Mining Clustering of Building Tools Using K-Means Method (Case Study In Adi Building Store). Journal of Technology and Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24
Sukamto, S., Id, I. D., & Angraini, T. R. (2018). Determination of Fire-Prone Areas in Riau Province Using Clustering K-Means Algorithm. JUITA: Journal of Informatics, 6(2), 137. https://doi.org/10.30595/juita.v6i2.3172
Syahidatul Helma, S., Rustiyan, R. R., Normala, E., Information Systems Studies Faculty of Science and Technology, P., State Islam Sultan Syarif Kasim Riau, U., Soebrantas No, J., & Baru, S. (2019). Clustering on Pekanbaru City Health Care Facility Data Using K-Means Algorithm. Puzzle Research Data Technology (Predatech) Faculty of Science and Technology, 1(November), 4.
Triyansyah, D., & Fitrianah, D. (2018). Data Mining Analysis Uses K-Means Clustering Algorithms to Determine Marketing Strategies. Journal of Telecommunications and Computers, 8(3), 163. https://doi.org/10.22441/incomtech.v8i3.4174
Yaumi, A. S., Zulfiqkar, Z., & Nugroho, A. (2020). Clustering of Consumer Characters Against Product Selection Tendencies Using K-Means. JOINTECS (Journal of Information Technology and Computer Science), 5(3), 195. https://doi.org/10.31328/jointecs.v5i3.1523
Yunita. (2018). Application of Data Mining Uses K-Means Clustering Algorithm on Admission of New Students (Case Study: Indragiri Islamic University). Journal of Systemization, 7(September), 238–249.
Copyright (c) 2021 Fauzia Allamatul Fithri, Sukma Wardhana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.