• Erzha Anges Farhandy (1*) Universitas Mercu Buana
  • Sukma Wardhana (2) Universitas Mercu Buana

  • (*) Corresponding Author
Keywords: Classification, Covid-19, CNN, deep learning, Chest X-Ray


CoV-2 virus this disease is spreading rapidly throughout the world. Various studies were carried out to control the spread of Covid-19. One way to detect Covid-19 is to study chest X-ray images of patients with Covid-19 symptoms. However, to detect Covid-19 through x-ray images, there are currently few radiology specialists needed. This study researched to detection of Covid-19 disease through chest x-ray images with a deep learning approach based on a convolutional neural network (CNN). Before training the model, data preprocessing is carried out, such as labeling and resizing. This study uses a CNN model with three layers of convolution and max-pooling layers and a fully-connected layer for the output. The results of the training using the CNN method produced a pretty good performance, with the best training accuracy (acc) value obtained in the 31st epoch with a value of 0.9593, training loss (loss) 0.1306, validation accuracy (val_acc) 0.9604, and loss validation (val_loss). 0.1399.


Download data is not yet available.


Allaouzi, I., & Ben Ahmed, M. (2019). A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases. IEEE Access, 7, 64279–64288.

Ayumi, V., & Nurhaida, I. (2021). Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network. JSAI (Journal Scientific and Applied Informatics), 4(2), 147–153.

Dhika, H., Kurnianda, N. R., Irfansyah, P., & Ananta, W. (2020). Model Prediksi Jenis Hewan dengan Metode Convolution Neural Network. 9, 31–40.

El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8.

Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam Optimization Algorithm for Wide and Deep Neural Network. Knowledge Engineering and Data Science, 2(1), 41.

Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 39(15), 5682–5689.

Jogin, M., Mohana, Madhulika, M. S., Divya, G. D., Meghana, R. K., & Apoorva, S. (2018). Feature extraction using convolution neural networks (CNN) and deep learning. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings, (May 2018), 2319–2323.

Marques, G., Agarwal, D., & de la Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Applied Soft Computing Journal, 96, 106691.

Muhathir, M., Theofil Tri Saputra, S., & Al-Khowarizmi, A.-K. (2020). Analysis K-Nearest Neighbors ( KNN ) in Identifying Tuberculosis Disease ( Tb ) By Utilizing Hog Feature Extraction. Al’adzkiya International of Computer Science and Information Technology (AIoCSIT) Journal, 1(1), 33–38.

Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID‑19) using X‑Ray. Pattern Analysis and Applications, 24(3), 1207–1220. Retrieved from

Naufal, M. F., Kusuma, S. F., Tanus, K. C., Sukiwun, R. V., Kristiano, J., Lieyanto, J. O., & R., D. C. (2021). Analisis Perbandingan Algoritma Klasifikasi Citra Chest X-ray Untuk Deteksi Covid-19. Teknika, 10(2), 96–103.

Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 533.

Rahman, T. (2022). COVID-19 Radiography Database. Retrieved from Kaggle website:

Silva, P., Luz, E., Silva, G., Moreira, G., Silva, R., Lucio, D., & Menotti, D. (2020). COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Informatics in Medicine Unlocked, 20, 100427.

Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., … Zha, Y. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study. European Journal of Radiology, 128(March), 1–9.

How to Cite
Farhandy, E., & Wardhana, S. (2022). CLASSIFICATION OF CORONAVIRUS DISEASE (COVID-19) THROUGH CHEST X-RAY IMAGES BASED ON DEEP LEARNING. Jurnal Pilar Nusa Mandiri, 18(2), 145-152.
Article Metrics

Abstract viewed = 82 times
PDF downloaded = 52 times