Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
CoV-2 virus this disease is spreading rapidly throughout the world. Various studies were carried out to control the spread of Covid-19. One way to detect Covid-19 is to study chest X-ray images of patients with Covid-19 symptoms. However, to detect Covid-19 through x-ray images, there are currently few radiology specialists needed. This study researched to detection of Covid-19 disease through chest x-ray images with a deep learning approach based on a convolutional neural network (CNN). Before training the model, data preprocessing is carried out, such as labeling and resizing. This study uses a CNN model with three layers of convolution and max-pooling layers and a fully-connected layer for the output. The results of the training using the CNN method produced a pretty good performance, with the best training accuracy (acc) value obtained in the 31st epoch with a value of 0.9593, training loss (loss) 0.1306, validation accuracy (val_acc) 0.9604, and loss validation (val_loss). 0.1399.
Allaouzi, I., & Ben Ahmed, M. (2019). A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases. IEEE Access, 7, 64279–64288. https://doi.org/10.1109/ACCESS.2019.2916849
Ayumi, V., & Nurhaida, I. (2021). Klasifikasi Chest X-Ray Images Berdasarkan Kriteria Gejala Covid-19 Menggunakan Convolutional Neural Network. JSAI (Journal Scientific and Applied Informatics), 4(2), 147–153. https://doi.org/10.36085/jsai.v4i2.1513
Dhika, H., Kurnianda, N. R., Irfansyah, P., & Ananta, W. (2020). Model Prediksi Jenis Hewan dengan Metode Convolution Neural Network. 9, 31–40.
El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3028012
Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam Optimization Algorithm for Wide and Deep Neural Network. Knowledge Engineering and Data Science, 2(1), 41. https://doi.org/10.17977/um018v2i12019p41-46
Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 39(15), 5682–5689. https://doi.org/10.1080/07391102.2020.1788642
Jogin, M., Mohana, Madhulika, M. S., Divya, G. D., Meghana, R. K., & Apoorva, S. (2018). Feature extraction using convolution neural networks (CNN) and deep learning. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings, (May 2018), 2319–2323. https://doi.org/10.1109/RTEICT42901.2018.9012507
Marques, G., Agarwal, D., & de la Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Applied Soft Computing Journal, 96, 106691. https://doi.org/10.1016/j.asoc.2020.106691
Muhathir, M., Theofil Tri Saputra, S., & Al-Khowarizmi, A.-K. (2020). Analysis K-Nearest Neighbors ( KNN ) in Identifying Tuberculosis Disease ( Tb ) By Utilizing Hog Feature Extraction. Al’adzkiya International of Computer Science and Information Technology (AIoCSIT) Journal, 1(1), 33–38.
Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID‑19) using X‑Ray. Pattern Analysis and Applications, 24(3), 1207–1220. Retrieved from https://link.springer.com/article/10.1007/s10044-021-00984-y
Naufal, M. F., Kusuma, S. F., Tanus, K. C., Sukiwun, R. V., Kristiano, J., Lieyanto, J. O., & R., D. C. (2021). Analisis Perbandingan Algoritma Klasifikasi Citra Chest X-ray Untuk Deteksi Covid-19. Teknika, 10(2), 96–103. https://doi.org/10.34148/teknika.v10i2.331
Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 533. https://doi.org/10.25126/jtiik.2021834515
Rahman, T. (2022). COVID-19 Radiography Database. Retrieved from Kaggle website: https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
Silva, P., Luz, E., Silva, G., Moreira, G., Silva, R., Lucio, D., & Menotti, D. (2020). COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Informatics in Medicine Unlocked, 20, 100427. https://doi.org/10.1016/j.imu.2020.100427
Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., … Zha, Y. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study. European Journal of Radiology, 128(March), 1–9. https://doi.org/10.1016/j.ejrad.2020.109041
Copyright (c) 2022 Erzha Anges Farhandy, Sukma Wardhana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.