BALI TOURIST VISITS CLUSTERED VIA TRIPADVISOR REVIEWS USING K-MEANS ALGORITHM

  • Ufik Alngatiq Hidayat Wamulkan A.S Universitas Primakara
  • Nengah Widya Utami Primakara Universiity
  • I Nyoman Yudi Anggara Primakara Universiity
Keywords: data mining, dbi, kdd, k-means clustering, tripadvisor

Abstract

Bali is one of the provinces with the most popular destinations for tourists. However, there are obstacles in developing tourist destinations in the province of Bali in terms of absorbing more tourist visits. Tripadvisor, the world's largest tourism information platform. In order to improve its service to users, Tripadvisor conducts online reviews to obtain ratings based on travel experience. The purpose of this study is to determine clustering and accuracy in tourist visits to tourist destinations in the province of Bali. Clustering is done using 3 clusters using the KDD method. The first process is data selection, then data processing which consists of several stages, first deleting rows of empty data, then cleaning duplicate data and the final result is 5261 clean data then data transformation, so that data can be read by python, The next process is data mining, this process uses the K-Means clustering algorithm which produces 3 clusters with cluster 1 being medium with 1495 data, high cluster 2 with 2315 data, and low cluster 3 with 1451 data. The Davies Boldin Index is used to evaluate the K-Algorithm means clustering, the result is 0.3 where the value is very good because it is not minus and the value is close to zero.

Downloads

Download data is not yet available.

References

Amrita, N. D. A., Handayani, M. M., & Erynayati, L. (2021). Pengaruh Pandemi Covid-19 Terhadap Pariwisata Bali. Jurnal Manajemen Dan Bisnis Equilibrium, 7(2), 246–257. https://doi.org/10.47329/jurnal_mbe.v7i2.824

Anggi Riyanto, A., Daryanto, D., & Abdurrahman, G. (2022). Text Mining Untuk Clustering Buku Di Perpustakaan Menggunakan Metode K-Means. National Multidisciplinary Sciences, 1(6), 835–845. https://doi.org/10.32528/nms.v1i6.239

Christian, B., & Hakim, L. (2019). Penerapan Algoritma Fuzzy C-Means Pada Penentuan Lokasi Gudang Pendukung PT. XYZ. AITI: Jurnal Teknologi Informasi, 16(1), 31–48. https://doi.org/10.24246/aiti.v16i1.31-48

Firman Ashari, I., Banjarnahor, R., Farida, D. R., Aisyah, S. P., Dewi, A. P., & Humaya, N. (2022). Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies. In Journal of Applied Informatics and Computing (JAIC) (Vol. 6, Issue 1). http://jurnal.polibatam.ac.id/index.php/JAIC

Hasibuan, F. P. A., Sumarno, S., & Parlina, I. (2021). Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 1(1), 15–20. https://doi.org/10.54259/satesi.v1i1.3

Herlinda, V., & Darwis, D. (2021). Analisis Clustering Untuk Recredesineling Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. Darwis, Dartono, 2(2), 94–99. http://jim.teknokrat.ac.id/index.php/JTSI

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139

Gosari, N. C., & Rismayani. (2023). Penerapan Data Mining Dalam Mengelompokkan Kunjungan Wisatawan Mancanegara Di Prov. Sulawesi Selatan Dengan K-Means Dan SVM. Jurnal Administrasi Dan Manajemen, 8(3), 308–317. https://doi.org/10.30591/jpit.v8i3.4554

Purnomo, B. S., & Prasetyaningrum, P. T. (2021). Penerapan Data Mining Dalam Mengelompokan Kunjungan Wisatawan di Kota Yogyakarta Menggunakan Metode K-Means. In Journal of Computer Science and Technology JCS-TECH (Vol. 1, Issue 1). https://doi.org/10.54840/jcstech.v1i1.9

Savitri, N., Pranata, R., Nadzario, A., Clara, M., Rahajeng, S., Politeknik, J. S., & Stis, S. (2021). Pengelompokan Kunjungan Wisata Kabupaten Kulon Progo Tahun 2019 Menggunakan K-Means Clustering (Vol. 12, Issue 1). https://jurnal.umj.ac.id/index.php/just-it/index

Seimahuira, S. (2021). Implementasi Datamining Dalam Menentukan Destinasi Unggulan Berdasarkan Online Reviews Tripadvisor Menggunakan Algoritma K-Means. Technologia: Jurnal Ilmiah, 12(1), 53-58.

Yuwono, W., & Kristini, V. (2023). Analisis Faktor-Faktor Yang Mempengaruhi Kepuasan Wisatawan Untuk Berkunjung Ke Kepulauan Riau. Jurnal Pengembangan IT, 8, 174–180. http://ejournal.urindo.ac.id/index.php/administrasimanajemen/index

TÜRK, F. (2023). Analysis of Intrusion Detection Systems in UNSW-NB15 and NSL-KDD Datasets with Machine Learning Algorithms. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(2), 465–477. https://doi.org/10.17798/bitlisfen.1240469

Utami, N. W., Sukajaya, N., Grana, E., & Dewi, A. (2019). The Implementation of Data Mining to Show UKT (Students’ Tuition) Using Fuzzy C-Means Algorithm (Case Study: Universitas Pendidikan Ganesha). https://doi.org/10.1109/ICACSIS47736.2019.8979933

Wayan Suparta. (2021). Recovery Pariwisata Bali Pasca Pandemi Covid 19 (Studi kasus: Penegakan Protokol Kesehatan. In Regulation Number (Vol. 12). https://doi.org/10.55115/sista.v1i1.1447

Winarta, A., & Kurniawan, W. J. (2021). Optimasi Cluster K-Means Menggunakan Metode Elbow Pada Data Pengguna Narkoba Dengan Pemograman Python. Jurnal Teknik Informatika Kaputama (JTIK), 5(1). https://jurnal-backup.kaputama.ac.id/index.php/JTIK/article/view/466

Published
2023-09-30
How to Cite
Wamulkan A.S, U., Utami, N., & Anggara, I. N. (2023). BALI TOURIST VISITS CLUSTERED VIA TRIPADVISOR REVIEWS USING K-MEANS ALGORITHM. Jurnal Pilar Nusa Mandiri, 19(2), 117-124. https://doi.org/10.33480/pilar.v19i2.4571