OPTIMIZATION OF POTATO LEAF DISEASE IDENTIFICATION WITH TRANSFER LEARNING APPROACH USING MOBILENETV1 ARCHITECTURE

  • Herlambang Brawijaya (1*) Institut Pertanian Bogor
  • Eva Rahmawati (2) Universitas Nusa Mandiri
  • Toto Haryanto (3) Institut Pertanian Bogor

  • (*) Corresponding Author
Keywords: CNN, disease classification, mobilenet architecture, potato leaf disease, transfer learning

Abstract

Diseases affecting potato leaves frequently lead to significant setbacks for farmers, reducing the overall harvest and the quality of the potatoes. Given the critical need for prompt disease detection, this research introduces the use of the MobileNet framework grounded in the Convolutional Neural Network (CNN) for adept detection of potato leaf ailments. During the research, potato leaf images undergo processing, and their distinct features are gleaned using CNN. Then, harnessing the MobileNet framework, these images undergo classification to ascertain the existence of diseases. The aspiration is that the formulated model can pinpoint diseases with notable precision, rapid feedback, and enhanced computational adeptness. Initial findings underscore the potential of this methodology in discerning potato leaf diseases, providing renewed optimism for farmers grappling with plant health issues. Experiments using the Transfer Learning approach showed good performance in classification and displayed a high accuracy rate of 99.2%.

Downloads

Download data is not yet available.

References

Akther, J., Harun-Or-Roshid, M., Nayan, A. A., & Kibria, M. G. (2021). Transfer learning on VGG16 for the Classification of Potato Leaves Infected by Blight Diseases. 2021 Emerging Technology in Computing, Communication and Electronics, ETCCE 2021. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ETCCE54784.2021.9689792

Anim-Ayeko, A. O., Schillaci, C., & Lipani, A. (2023). Automatic blight disease detection in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753) plants using deep learning. Smart Agricultural Technology, 4. https://doi.org/10.1016/j.atech.2023.100178

Arshad, F., Mateen, M., Hayat, S., Wardah, M., Al-Huda, Z., Gu, Y. H., & Al-antari, M. A. (2023). PLDPNet: End-to-end hybrid deep learning framework for potato leaf disease prediction. Alexandria Engineering Journal, 78, 406–418. https://doi.org/10.1016/j.aej.2023.07.076

Dasgupta, S. R., Rakshit, S., Mondal, D., & Kole, D. K. (2020). Detection of Diseases in Potato Leaves Using Transfer Learning. Advances in Intelligent Systems and Computing, 999, 675–684. Springer. https://doi.org/10.1007/978-981-13-9042-5_58

Gaikwad, V. P., & Musande, V. (2023). Potato Plant leaf disease detection using CNN Model. Eur. Chem. Bull, 12(1), 516–527.

Gao, J., Westergaard, J. C., Sundmark, E. H. R., Bagge, M., Liljeroth, E., & Alexandersson, E. (2021). Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowledge-Based Systems, 214. https://doi.org/10.1016/j.knosys.2020.106723

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., … Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv. Retrieved from http://arxiv.org/abs/1704.04861

Islam, F., Hoq, M. N., & Rahman, C. M. (2019). Application of Transfer Learning to Detect Potato Disease from Leaf Image. 2019 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and Internet-of-Things, RAAICON 2019, 127–130. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/RAAICON48939.2019.53

Jaya, T. S., & Sahlinal, D. (2022). Potato Leaf Disease Detection with Convolutional Neural Network Method. https://doi.org/10.25181/icoaas.v3i3.2867

Khan, M. A., Armghan, A., Alenezi, F., Abbas, S., Alhaisoni, M., Tariq, U., … Thinnukool, O. (2023). Crops Leaf Diseases Recognition: A Framework of Optimum Deep Learning Features Performance evaluation of deep e-CNN with integrated spatial-spectral features in hyperspectral image classification View project Crops Leaf Diseases Recognition: A Framework of Optimum Deep Learning Features. Computers, Materials & Continua, 74(1), 1139–1159. https://doi.org/10.32604/cmc.2022.028824

Lesmana, A. M., Fadhillah, R. P., & Rozikin, C. (2022). Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN). Jurnal Sains Dan Informatika, 8(1), 21–30. https://doi.org/10.34128/jsi.v8i1.377

M, T. A., & Kristiyanti, D. A. (2023). Mobilenetv2 Architecture for Identification of Potato Leaf Disease. Journal of Theoretical and Applied Information Technology, 101(16), 6273–6285.Retrieved from https://www.researchgate.net/publication/373656978

Nishad, M. A. R., Mitu, M. A., & Jahan, N. (2022). Predicting and Classifying Potato Leaf Disease using K-means Segmentation Techniques and Deep Learning Networks. Procedia Computer Science, 212(C), 220–229. Elsevier B.V. https://doi.org/10.1016/j.procs.2022.11.006

Rashid, J., Khan, I., Ali, G., Almotiri, S. H., Alghamdi, M. A., & Masood, K. (2021). Multi-level deep learning model for potato leaf disease recognition. Electronics (Switzerland), 10(17). https://doi.org/10.3390/electronics10172064

Rozaqi, A. J., Sunyoto, A., & Arief, M. R. (2021a). Implementasi Transfer Learning pada Algoritma Convolutional Neural Network Untuk Identifikasi Penyakit Daun Kentang. Procedia of Engineering and Life Science, 1(1).

Rozaqi, A. J., Sunyoto, A., & Arief, R. (2021b). Deteksi Penyakit pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network Detection of Potato Leaves Disease Using Image Processing with Convolutional Neural Network Methods.

Sagar, A., & Jacob, D. (2020). On Using Transfer Learning For Plant Disease Detection. https://doi.org/10.13140/RG.2.2.12224.15360/1

Saputra, R. A., Wasyianti, S., Supriyatna, A., & Saefudin, D. F. (2021). Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi. JURNAL SWABUMI, 9(2). Retrieved from https://archive.ics.uci.edu/ml/datasets/Rice

Sharma, A. K., Kang, B., & Kim, K. K. (2021). LightNet: A Lightweight Neural Network for Image Classification. In 2021 18th International SoC Design Conference (ISOCC) (pp. 419-420). IEEE. https://doi.org/10.1109/ISOCC53507.2021.9613865

Sharma, P., Berwal, Y. P. S., & Ghai, W. (2020). Performance analysis of deep learning CNN models for disease detection in plants using image segmentation. Information Processing in Agriculture, 7(4), 566-574.. https://doi.org/10.1016/j.inpa.2019.11.001

Suganthi, M., & Sathiaseelan, J. (2020). An Exploratory of Hybrid Techniques on Deep Learning for Image Classification. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), 1–4. https://doi.org/10.1109/ICCCSP49186.2020.9315270

Tiwari, D., Ashish, M., Gangwar, N., Sharma, A., Patel, S., & Bhardwaj, S. (2020). Potato Leaf Diseases Detection Using Deep Learning. Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2020), 461–466.

Wani, J. A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S., & Singh, S. (2022, January 1). Machine Learning and Deep Learning Based Computational Techniques in Automatic Agricultural Diseases Detection: Methodologies, Applications, and Challenges. Archives of Computational Methods in Engineering, Vol. 29, pp. 641–677. Springer Science and Business Media B.V. https://doi.org/10.1007/s11831-021-09588-5

Published
2024-03-28
How to Cite
Brawijaya, H., Rahmawati, E., & Haryanto, T. (2024). OPTIMIZATION OF POTATO LEAF DISEASE IDENTIFICATION WITH TRANSFER LEARNING APPROACH USING MOBILENETV1 ARCHITECTURE. Jurnal Pilar Nusa Mandiri, 20(1), 33-40. https://doi.org/10.33480/pilar.v20i1.4718
Article Metrics

Abstract viewed = 137 times
PDF downloaded = 106 times