ABILITY CONVOLUTIONAL FEATURE EXTRACTION FOR CHILI LEAF DISEASE USING SUPPORT VECTOR MACHINE CLASSIFICATION

Keywords: leaf chilli diseases, SVM, transfer learning

Abstract

Chili plants are among the most commonly used food ingredients in various dishes in Indonesia. Leaves on chili plants are often affected by disease; if the disease is not treated immediately, it can damage the plant and cause crop failure. Early detection of chili plant diseases is important to reduce the risk of crop failure. The development of technology and the application of machine-learning algorithms can automatically monitor chili plants using a computer system. Using this algorithm, the system analyzes and identifies diseases that a camera can observe and record. In this study, the proposed method for feature extraction uses a convolutional neural network (CNN) algorithm with transfer learning using VGG19. For classification using SVM for training data, accuracy generated 95%, precision 95%, recall 95%, and F1-Score 95%, and testing data accuracy generated 90%, precision 89%, recall 90%, and F1-Score 89%, proving that the convolutional process with architecture VGG19 and SVM algorithm is acceptable for classification. In future research, other architectures or extraction fusions can be used to maximize the results.

Downloads

Download data is not yet available.

References

Abdullah, D. M., & Abdulazeez, A. M. (2021). Machine learning applications based on SVM classification a review. Qubahan Academic Journal, 1(2), 81-90.

Anggraeni, D. S., Widayana, A., Rahayu, P. D., & Rozikin, C. (2022). Metode Algoritma Convolutional Neural Network pada Klasifikasi Penyakit Tanaman Cabai. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 7(1), 73. https://doi.org/10.30998/string.v7i1.13304

Barus, M. D. B., Mustafa, M., & Thahirah, F. S. (2022). Analisis Trend Produksi Dan Harga Komoditas Cabai Untuk Meningkatkan Produktivitas Desa Lau Gumba Kabupaten Karo. NUSANTARA: Jurnal Ilmu Pengetahuan Sosial, 9(2), 527–531.

Das Chagas Silva Araujo, S., Malemath, V. S., & Sundaram, K. M. (2021). Symptom-Based Identification of G-4 Chili Leaf Diseases Based on Rotation Invariant. Frontiers in Robotics and AI, 8(May), 1–8. https://doi.org/10.3389/frobt.2021.650134

Firmansyah, E., Hidayat, C., Husna, R., Yuliani, S., & Utomo, R. (2020). Application of the Bayes Theorem to the Expert System for Diagnosing Big Red Chili Plants. Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, 11-12 July 2019, Bandung, Indonesia. EAI. https://doi.org/10.4108/eai.11-7-2019.2297526

Hafidhoh, N. (2023). Identifikasi Penyakit Daun Tanaman Cabai Merah Dengan Ekstraksi Fitur Dan Klasifikasi Support Vector Machine. Hasil Penelitian Dan Pengabdian Kepada Masyarakat (SEHATI ABDIMAS) 2022, 5(1), 64–74.

Helgi Library. (2023). Which Country Produces the Most Green Chilli and Peppers? Retrieved October 29, 2023, from https://www.helgilibrary.com/ website: https://www.helgilibrary.com/charts/which-country-produces-the-most-green-chilli-and-peppers/

Ibrahim, I., & Abdulazeez, A. (2021). The Role of Machine Learning Algorithms for Diagnosing Diseases. Journal of Applied Science and Technology Trends, 2(01), 10–19. https://doi.org/10.38094/jastt20179

Islam, A. H. M. S., Schreinemachers, P., & Kumar, S. (2020). Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in Bangladesh. Crop Protection, 133(February), 105139. https://doi.org/10.1016/j.cropro.2020.105139

Juandri, & Anwar, N. (2023). BULLET : Pengenalan Warna Terhadap Objek Dengan Model Analisis Elemen Data Warna Gambar Berbasis Deep Neural Network. Jurnal Multidisiplin Ilmu, 2(01), 23–31. Retrieved from https://journal.mediapublikasi.id/index.php/bullet

Karuna, M., Varsha, B. S., M, S. R., Meghana, G. K., & Student, B. (2019). Early Detection of Chili Plant Leaf Diseases using Machine Learning. International Journal of Engineering Science and Computing, 9(5), 22328–22335. Retrieved from http://ijesc.org/

Kelikualiq, R., Elektro, F. T., Telkom, U., Bogi, N., Karna, A., Elektro, F. T., … Cabai, D. (2022). Sistem Monitoring Kesehatan Tanaman Cabai Pada Smart Greenbox Menggunakan Algoritma Convolutional Neural Network ( CNN ) Berbasis Internet Of Things ( IOT ) Dan Website. 8(6), 3962–3964.

Lina, Q. (2019). Apa itu Convolutional Neural Network? Retrieved from medium.com website: https://medium.com/@16611110/apa-itu-convolutional-neural-network-836f70b193a4

Marcella, D., Yohannes, Y., & Devella, S. (2022). Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19. Jurnal Algoritme, 3(1), 60–70. https://doi.org/10.35957/algoritme.v3i1.3331

Mascarenhas, S., & Agarwal, M. (2021). A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), 96–99. IEEE. https://doi.org/10.1109/CENTCON52345.2021.9687944

Mohbey, K. K., Sharma, S., Kumar, S., & Sharma, M. (2022). COVID-19 identification and analysis using CT scan images: Deep transfer learning-based approach. In Blockchain Applications for Healthcare Informatics (pp. 447–470). Elsevier. https://doi.org/10.1016/B978-0-323-90615-9.00011-6

Muzahid, A. A. M., Wan, W., & Hou, L. (2020). A new volumetric CNN for 3D object classification based on joint multiscale feature and subvolume supervised learning approaches. Computational Intelligence and Neuroscience, 2020, 1-17. https://doi.org/10.1155/2020/5851465

Nuanmeesri, S., & Sriurai, W. (2021). Multi-Layer Perceptron Neural Network Model Development for Chili Pepper Disease Diagnosis Using Filter and Wrapper Feature Selection Methods. Engineering, Technology and Applied Science Research, 11(5), 7714–7719. https://doi.org/10.48084/etasr.4383

Nusinovici, S., Tham, Y. C., Chak Yan, M. Y., Wei Ting, D. S., Li, J., Sabanayagam, C., … Cheng, C.-Y. (2020). Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 122, 56–69. https://doi.org/10.1016/j.jclinepi.2020.03.002

Patil, A., & Lad, K. (2019). Review of Dieases Detection and Classification for Chilli Leaf using Various Algorithams. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019, 1–4. https://doi.org/10.1109/ICECCT.2019.8869080

Patil, A., & Lad, K. (2021). Chili Plant Leaf Disease Detection Using SVM and KNN Classification. In Advances in Intelligent Systems and Computing (Vol. 1187, pp. 223–231). Singapore: Springer. https://doi.org/10.1007/978-981-15-6014-9_26

Polii, M. G. M., Sondakh, T. D., Raintung, J. S. M., Doodoh, B., & Titah, T. (2019). Kajian Teknik Budidaya Tanaman Cabai ( Capsicum annuum L .) Kabupaten Minahasa Tenggara. Eugenia, 25(3), 73–77.

Rahayu, A. S., Fauzi, A., & Rahmat, R. (2022). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 349. https://doi.org/10.30865/json.v4i2.5398

Rahman, E., Rizko, R. A., Sujiono, S., & Taufik, T. (2023). Segmentasi Wilayah Indonesia Yang Berpotensi Budidaya Cabai Dengan Hierarki Clustering. JUTIN : Jurnal Teknik Industri Terintegrasi, 6(4), 1223–1235. https://doi.org/10.31004/jutin.v6i4.20010

Renfiyeni, Afrini, D., Mahmud, Nelvi, Y., Harissatria, Surtina6, D., & Elinda, F. (2023). Pengendalian Hama Dan Penyakit Tanaman Cabai. Communnity Development Journal, 4(2), 4952–4961.

Rosalina, R., & Wijaya, A. (2020). Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning. Jurnal Teknik Informatika Dan Sistem Informasi, 6(3), 452–461. https://doi.org/10.28932/jutisi.v6i3.2857

Rozlan, S., & Hanafi, M. (2022). Efficacy of chili plant diseases classification using deep learning: A preliminary study. Indonesian Journal of Electrical Engineering and Computer Science, 25(3), 1442–1449. https://doi.org/10.11591/ijeecs.v25.i3.pp1442-1449

Santika, E. F. (2023). Konsumsi Cabai Besar dan Rawit 2022 Sudah Melampaui Capaian Sebelum Pandemi. Retrieved from databoks.katadata.co.id website: https://databoks.katadata.co.id/datapublish/2023/06/22/konsumsi-cabai-besar-dan-rawit-2022-sudah-melampaui-capaian-sebelum-pandemi

Setiawan, M. H., Gunadi, I. G. A., & Indrawan, G. (2022). Klasifikasi Pelayanan Kesehatan Berdasarkan Data Sentimen Pelayanan Kesehatan menggunakan Multiclass Support Vector Machine. Jurnal Sistem Dan Informatika (JSI), 17(1), 47–54. Retrieved from https://www.jsi.stikom-bali.ac.id/index.php/jsi/article/view/512

Stoilov, G., Kavardzhikov, V., & Pashkouleva, D. (2012). A Comparative Study of Random Patterns for Digital Image Correlation. Journal of Theoretical and Applied Mechanics, 42(2), 55–66. https://doi.org/10.2478/v10254-012-0008-x

Suradiradja, K. H. (2022). Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang. Faktor Exacta, 14(4), 194-205.

Susim, T., & Darujati, C. (2021). Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 2(3), 534–545. https://doi.org/10.46799/jsa.v2i3.202

Wahab, A. H. B. A., Zahari, R., & Lim, T. H. (2019, July). Detecting diseases in chilli plants using K-means segmented support vector machine. In 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC) (pp. 57-61). IEEE.

Windarningsih, M. (2019). Identification of virus causing the yellow leaf curl diseases on chili pepper in Lombok Island by PCR-RFLP technique. AIP Conference Proceedings, 2199, 1–6. https://doi.org/10.1063/1.5141297

Yana, Y. E., & Nafi’iyah, N. (2021). Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN. RESEARCH : Journal of Computer, Information System & Technology Management, 4(1), 28. https://doi.org/10.25273/research.v4i1.6687

Zikra, F., Usman, K., & Patmasari, R. (2021). Deteksi Penyakit Cabai Berdasarkan Citra Daun Menggunakan Metode Gray Level Co-Occurence Matrix Dan Support Vector Machine. Seminar Nasional Hasil Penelitian Dan Pengabdian Masyarakat, ISSN: 2598(E-ISSN: 2598-0238), 105.

Published
2024-03-28
How to Cite
Saputra, R., Haryanto, T., & Wasyianti, S. (2024). ABILITY CONVOLUTIONAL FEATURE EXTRACTION FOR CHILI LEAF DISEASE USING SUPPORT VECTOR MACHINE CLASSIFICATION. Jurnal Pilar Nusa Mandiri, 20(1), 25-32. https://doi.org/10.33480/pilar.v20i1.4961