IMPLEMENTATION OF ARMA MODEL FOR BENGAWAN SOLO RIVER WATER LEVEL AT JURUG MONITORING POST

  • Sri Siswanti (1) STMIK Sinar Nusantara Surakarta https://orcid.org/0000-0001-8146-7611
  • Retno Tri Vulandari (2*) STMIK Sinar Nusantara Surakarta
  • Setiyowati Setiyowati (3) STMIK Sinar Nusantara Surakarta

  • (*) Corresponding Author
Keywords: autoregressive moving average (ARMA), jurug monitoring post, time series analysis, water level

Abstract

The amount of annual rainfall in the Bengawan Solo watershed causes high water flow (water discharge) in several rivers. In addition, high flow rates significantly increased the water surface level at some observation sites. The Bengawan Solo River burst its banks in November 2016, causing flooding in several areas in eastern Solo. At that time, the river stage at the Jurug monitoring post passed ten. Therefore, a flood early warning system would be useful for predicting water levels in this context. Every day, one post on the Bengawan Solo River measures the water level. The time series data used in this study is the water level. Autoregressive Moving Average (ARMA) is a predictive method for measuring time set data. The assumption of homoscedasticity or constant error variance is used in this model. However, the study will use the ARMA model if the variance changes randomly. The study used 60 pieces of data from January to February 2018. This study can directly use ARMA because the data results are stationary based on ADF value 0.0036. After the first pause, the ACF and PACF are disconnected based on the correlogram pattern. This shows that the water level of the Bengawan Solo River in that period can appear on the Autoregressive Moving Average with orders p = 1 and q = 1 ARMA(1,1). Thus, the total average residue is 0.0668384, so the short error is 6.68384%.

Downloads

Download data is not yet available.

Author Biography

Sri Siswanti, STMIK Sinar Nusantara Surakarta

Lecturer

References

Berutu, S. S., Budiati, H., & Gulo, F. (2023). Data Preprocessing Approach for Machine Learning-based Sentiment Classification. Jurnal Informatics, Telecommunication, and Electronics Vol 15 No 4, 34-43.

Biantoro, A. W., Iskendar, & Subekti. (2021). The Effects of Water Debit and Number of Blades on the Power Generated of Prototype Turbines Propeller as Renewable Electricity. Jurnal Rekayasa Mesin Vol 12 No 1, 54-64.

Chaudhary, A. A., Nazir, N., Riaz, A., Sadiq, N., & Riaz, N. (2022). Autocorrelation: what happens if the error or disturbance terms are correlated in time-series data. Competitive Education Research Journal, 3(2), 154-163.

Dewi, W. I., & Indah, N. P. (2022). Pengaruh Perputaran Kas dan Modal Kerja terhadap Profitabilitas Perusahaan di Bursa Efek Indonesia. Jurnal Ekonomi, Manajemen, dan Akuntansi (JEBM) Vol 24 No 3, 624-629.

Fauzi, & Irviani, R. (2023). Analysis of The Effect of Macropredential and Macroprudential Indicators on The Stock Price Index of Islamic Banks in Indonesia Using The Error Correction Model. Jurnal Syntax Admiration Vol 4 No 5, 1-19.

Gustiansyah, M. A., Rizki, A., & Apriyanti, B. (2023). Aplikasi Model ARIMA dalam Peramalan Data Harga Emas Dunia. Jurnal Statistika dan Aplikasinya Vol 7 No 1, 84-92.

Hidayat, D., Legowo, S., & Farid, M. (2022). Clarification of Watershed Recharge in Cisadane River Basin throughGround Test. Journal of the Civil Engineering Forum,, 217-224.

Marheni, R., & Triyanto, E. (2023). Pengaruh Dana Alokasi Umum, Dana Alokasi Khusus dan Dana Bagi Hasil terhadap Belanja Modal di Kabupaten/Kota Provinsi Jawa Tengah. Jurnal Cakrawala Ilmiah Vol 2 No 11, 224-232.

Maulidiyah, W., & Fauzy, A. (2023). Perbandingan Metode Peramalan Double Exponential Smoothing dengan Damped Parameter dan Autoregressive Integrated Moving Average. Emerging Statistics and Data Science Journal Vol 1 No 3, 361-377.

Nguyen, X. H. (2020). Combining Statistical Machine Learning Models with ARIMA for Water Level forecasting: The case of the Red river. Advances in Water Resources Journal Vol 142, 47-52.

Park, K., Seong, Y., & Jung, Y. (2023). Development of Water Level Prediction Improvement Method Using Multivariate Time Series Data by GRU Model. MDPI Journal Issu 15, 1-14.

Safwandi. (2023). Time Series Model Using Autoregressive Integrated Moving Average (ARIMA) Method for Inflation in Indonesia. Jurnal Investasi Islam Vol 8 No 1, 13-25.

Saidah, H., & Hanifah, L. (2020). Analysis of Water System Condition for Monitoring of Critical Area in Jangkok Watershed. Jurnal Tanah dan Sumberdaya Lahan Vol 7 No 2 , 237-248.

Sumiyati, & Wilujeng, P. R. (2022). Metode ARCH/GARCH untuk Memprediksi Hubungan Economic Uncertainty (COVID 19) dan Volatilitas Saham. Jurnal Bisnis dan Akuntansi Vol 24 No 1, 117-130.

Trinugroho, M. W., Arif, S. S., & Susanto, S. (2022). Changes in Rainfall Pattern in Bengawan Solo Sub-Watershed. Journal of Soil Science and Argoclimatology Vol 19 No 2, 125-136.

Published
2024-03-29
How to Cite
Siswanti, S., Vulandari, R., & Setiyowati, S. (2024). IMPLEMENTATION OF ARMA MODEL FOR BENGAWAN SOLO RIVER WATER LEVEL AT JURUG MONITORING POST. Jurnal Pilar Nusa Mandiri, 20(1), 69-74. https://doi.org/10.33480/pilar.v20i1.5004
Article Metrics

Abstract viewed = 97 times
PDF downloaded = 83 times