Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Generation Z is a group that is very connected to digital technology, especially social media such as Twitter. Their widespread presence on these platforms creates a unique opportunity to understand their behavioural patterns and personalities. However, research on personality prediction on social media is still limited and focused on certain platforms or different age groups. Personality prediction can help to find out someone's personality by just looking at tweets on social media. This research aims at two things: first, to build a Gen-Z personality prediction model on Twitter based on the Big Five Personality Model with the K-Nearest Neighbor (KNN) algorithm and Support Vector Machine (SVM). Second, test and compare the performance of previously generated personality prediction models with various evaluation metrics. The research results show that the KNN algorithm has an accuracy rate of 0.73%, precision of 0.73%, recall of 0.73%, and score of 0.72%. Based on the test results, the SVM algorithm obtained the best accuracy, which received an accuracy of 0.78%, precision of 0.82%, recall of 0.78%, and F1-score of 0.78%. This research contributes in two ways: first, scientifically, by understanding Gen-Z personalities on Twitter, and second, by developing new prediction methods and insights into Gen-Z behaviour. Second, practically, by helping with communication and marketing strategies, product/service development and social interventions for Gen-Z.
Aisah, S., Umbara, F. R., & Ashaury, H. (2022). Klasifikasi Kerpibadian Berdasarkan Big Five Personality Menggunakan Metode Fuzzy Decision Tree Dengan Algoritma C4.5. Jurnal Teknologi Informatika Dan Komputer, 8(1), 333–349. https://doi.org/10.37012/jtik.v8i1.1110
Cai, L., & Liu, X. (2022). Identifying Big Five personality traits based on facial behavior analysis. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1001828
Firamadhina, F. I. R., & Krisnani, H. (2021). Perilaku Generasi Z Terhadap Penggunaan Media Sosial Tiktok: TikTok Sebagai Media Edukasi dan Aktivisme. Share : Social Work Journal, 10(2), 199. https://doi.org/10.24198/share.v10i2.31443
Gade, P. D. M. V., Kharat, A., Thoke, S., & Khare, K. (2023). Review on Text-Based Personality Prediction Using Social Media Data. International Journal of Innovations in Engineering and Science, 8(4). https://doi.org/10.46335/IJIES.2023.8.4.4
Gupta, I., Jain, M., & Johri, P. (2023). Smart-Hire Personality Prediction Using ML. 2023 International Conference on Disruptive Technologies (ICDT), 381–385. https://doi.org/10.1109/ICDT57929.2023.10151367
Han, N., Li, S., Huang, F., Wen, Y., Su, Y., Li, L., Liu, X., & Zhu, T. (2023). How social media expression can reveal personality. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1052844
Ichsanudin, M., Susilo, A., & Solehudin, A. (2021). Prediksi Kepribadian Berdasarkan Media Sosial Twitter Menggunakan Metode Naïve Bayes Classifier. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 988–996. https://doi.org/http://dx.doi.org/10.30645/j-sakti.v5i2.394
Maharani, W., & Effendy, V. (2022). Big five personality prediction based in Indonesian tweets using machine learning methods. International Journal of Electrical and Computer Engineering (IJECE), 12(2), 1973. https://doi.org/10.11591/ijece.v12i2.pp1973-1981
Maulidah, M. (2023). Klasifikasi Kepribadian Menggunakan Algoritma Machine Learning. Jurnal Informatika Dan Tekonologi Komputer (JITEK), 3(1), 66–73. https://doi.org/10.55606/jitek.v3i1.1292
Mustafa, H., Mansoor, T., Yaqoob, S., Mehmood, S., & Rahman, M. M. (2023). Personality Analysis by Tweet Mining. Journal of Innovative Computing and Emerging Technologies, 3(1). https://doi.org/10.56536/jicet.v3i1.60
Pujiono, A. (2021). Media Sosial Sebagai Media Pembelajaran Bagi Generasi Z. Didache: Journal of Christian Education, 2(1), 1. https://doi.org/10.46445/djce.v2i1.396
Tandon, V., & Mehra, R. (2023). Study of Approaches to Predict Personality Using Digital Twin. In Neoromomorphic computing (p. 296). https://doi.org/10.5772/intechopen.110487
Trang, N. M., McKenna, B., Cai, W., & Morrison, A. M. (2024). I do not want to be perfect: investigating generation Z students’ personal brands on social media for job seeking. Information Technology & People, 37(2), 793–814. https://doi.org/10.1108/ITP-08-2022-0602
Utami, N. A., Maharani, W., & Atastina, I. (2021). Personality Classification of Facebook Users According to Big Five Personality Using SVM (Support Vector Machine) Method. Procedia Computer Science, 179, 177–184. https://doi.org/10.1016/j.procs.2020.12.023
Vijay, H., & Sebastian, N. (2022). Personality Prediction using Machine Learning. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 1–6. https://doi.org/10.1109/IC3SIS54991.2022.9885425
Wang, B., Shen, C., Zhao, T., Zhai, X., Ding, M., Dai, L., Gai, S., & Liu, D. (2022). Development of a Check-All-That-Apply (CATA) Ballot and Machine Learning for Generation Z Consumers for Innovative Traditional Food. Foods, 11(16), 2409. https://doi.org/10.3390/foods11162409
Xu, J., Tian, W., Lv, G., Liu, S., & Fan, Y. (2021). Prediction of the Big Five Personality Traits Using Static Facial Images of College Students With Different Academic Backgrounds. IEEE Access, 9, 76822–76832. https://doi.org/10.1109/ACCESS.2021.3076989
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.