STUDENT ATTENDANCE BASED ON FACE RECOGNITION USING THE CONVOLUTIONAL NEURAL NETWORK METHOD

Authors

  • Salman Salman Universitas Teknologi Mataram
  • Hendri Ramdan Universitas Teknologi Mataram

DOI:

https://doi.org/10.33480/pilar.v21i1.6157

Keywords:

attendance, CNN, face recognition, students

Abstract

Mataram University of Technology (UTM) still relies on a manual attendance process, such as signing paper-based attendance lists, which are prone to fraud and difficult to manage on a large scale. This study develops a face recognition-based attendance system using Convolutional Neural Network (CNN), which can automatically recognize visual patterns and unique facial features. CNN has advantages in extracting significant facial features, allowing it to recognize faces under various lighting conditions and viewing angles. The dataset used consists of 5,820 facial images from 97 students, with 60 augmented images per student. The results indicate that this system can be implemented in a lecture environment, achieving a validation accuracy of 98.5% at the 150th epoch. However, the model has some limitations, such as a relatively small dataset size and challenges in recognizing faces under extreme lighting conditions or unusual angles, which can affect accuracy in real-world applications. Additionally, although this system has the potential for real-time implementation, further optimization is required to ensure fast and accurate responses on a large scale. To overcome these limitations, future research can explore the use of direct camera input to enhance efficiency and user experience. Furthermore, improving dataset quality by incorporating variations in lighting and image angles, as well as exploring alternative deep learning architectures such as Vision Transformers (ViT) or Swin Transformer, can enhance model performance and generalization. By implementing these improvements, the facial recognition-based attendance system can be more optimal in enhancing accuracy and ease of use in academic environments.

Downloads

Download data is not yet available.

References

Abdulameer, M. H., Hussein, H. A., & Bachay, F. M. (2023). DEEP CONVOLUTIONAL NEURAL NETWORK-BASED FACE RECOGNITION APPROACH. International Journal on Technical and Physical Problems of Engineering, 15(2), 94-100.

Agus Aryawan I Putu, P. I. N. F. K. Q. (2023). ANALISIS PERBANDINGAN ALGORITMA CNN DAN SVM PADA KLASIFIKASI EKSPRESI WAJAH. Jurnal Teknologi Informasi Dan Komputer, 9(4), 399–408. https://doi.org/https://doi.org/10.36002/jutik.v9i4.2545

Aldiani, D., Dwilestari, G., Susana, H., Hamonangan, R., & Pratama, D. (2024). Implementasi Algoritma CNN dalam Sistem Absensi Berbasis Pengenalan Wajah. Jurnal Informatika Polinema, 10(2), 197-202. https://doi.org/10.33795/jip.v10i2.4852

Alwendi, A., & Masriadi, M. (2021). APLIKASI PENGENALAN WAJAH MANUSIA PADA CITRA MENGGUNAKAN METODE FISHERFACE. Jurnal Digit, 11(1), 1-8. https://doi.org/10.51920/jd.v11i1.174

Andini, D. P., Sugiarta, Y. G., Putro, T. Y., & Setiawan, R. D. (2022a). Sistem Presensi Kelas Berbasis Pengenalan Wajah Menggunakan Metode CNN. JTERA (Jurnal Teknologi Rekayasa), 7(2), 315-322. https://doi.org/10.31544/jtera.v7.i2.2022.315-322

Gu, M., Liu, X., & Feng, J. (2022). Classroom face detection algorithm based on improved MTCNN. Signal, Image and Video Processing, 16(5), 1355–1362. https://doi.org/10.1007/s11760-021-02087-x

Guo, Q., Wang, Z., Fan, D., & Wu, H. (2022). Multi-face detection and alignment using multiple kernels. Applied Soft Computing, 122, 108808. https://doi.org/10.1016/j.asoc.2022.108808

He, X., & Ding, F. (2023). An Efficient Face Recognition Method Based on CNN. 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), 1788–1791. https://doi.org/10.1109/ICPECA56706.2023.10076242

Joshi, D., Patil, P., Singh, V., Vanjari, A., Shinde, T., & Giri, H. (2023). Face Recognition Based Attendance System. 2023 5th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), 1–6. https://doi.org/10.1109/ICNTE56631.2023.10146718

Kavitha, A. V., Srikrishna, A., & Satyanarayana, C. (2022). Crop image classification using spherical contact distributions from remote sensing images. Journal of King Saud University - Computer and Information Sciences, 34(3) , 534–545. https://doi.org/10.1016/j.jksuci.2019.02.008

Kosasih, R. (2020). Kombinasi Metode ISOMAP Dan KNN Pada Image Processing Untuk Pengenalan Wajah. CESS (Journal of Computer Engineering, System and Science), 5(2). https://doi.org/10.24114/cess.v5i2.18982

Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. In Array (Vol. 16). https://doi.org/10.1016/j.array.2022.100258

Qi, X., Wu, C., Shi, Y., Qi, H., Duan, K., & Wang, X. (2023). A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism. Computational Intelligence and Neuroscience, 2023. https://doi.org/10.1155/2023/2501022

Rahmad, ST., M.Kom., Dr. Eng., C., Syulistyo, S.Kom., M.Kom, A. R., & Wardana, A. R. (2022). Development of Deep Learning Applications for Face Recognition in Online Media to Determine Student Presence. Jurnal Informatika Polinema, 8(3). https://doi.org/10.33795/jip.v8i3.817

Saragih, R. E., & To, Q. H. (2022). A Survey of Face Recognition based on Convolutional Neural Network. Indonesian Journal of Information Systems, 4(2). https://doi.org/10.24002/ijis.v4i2.5439

Satwikayana, S., Adi Wibowo, S., & Vendyansyah, N. (2021). SISTEM PRESENSI MAHASISWA OTOMATIS PADA ZOOM MEETING MENGGUNAKAN FACE RECOGNITION DENGAN METODE CONVULITIONAL NEURAL NETWORK BERBASIS WEB. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2). https://doi.org/10.36040/jati.v5i2.3762

Silitonga, P. D., & Damanik, R. (2021). Perbandingan Algoritma k-Nearest Neighbors (k-NN) dan Support Vector Machines (SVM) untuk Klasifikasi Pengenalan Citra Wajah. Jurnal ICT : Information Communication & Technology, 20(1). https://doi.org/10.36054/jict-ikmi.v20i1.354

Sintawati, A., Windarti, I., & Baihaqi, I. (2023). Perancangan Loker Cerdas untuk Penerimaan Paket dirumah menggunakan Sistem Pengenalan Wajah. Jurnal Minfo Polgan, 12(1). https://doi.org/10.33395/jmp.v12i1.12726

Sugeng, S., & Mulyana, A. (2022). Sistem Absensi Menggunakan Pengenalan Wajah (Face Recognition) Berbasis Web LAN. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(1). https://doi.org/10.32736/sisfokom.v11i1.1371

Susim, T., & Darujati, C. (2021). Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 2(3). https://doi.org/10.46799/jsa.v2i3.202

Widi Wiguna, C., Dedy Irawan, J., & Orisa, M. (2023). PENERAPAN METODE CONVOLUTIONAL NEURAL NETWORK PADA APLIKASI DETEKSI WAJAH BURONAN BERBASIS WEB. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2). https://doi.org/10.36040/jati.v6i2.5438

Downloads

Published

2025-03-21

How to Cite

Salman, S., & Ramdan, H. . (2025). STUDENT ATTENDANCE BASED ON FACE RECOGNITION USING THE CONVOLUTIONAL NEURAL NETWORK METHOD. Jurnal Pilar Nusa Mandiri, 21(1), 117–125. https://doi.org/10.33480/pilar.v21i1.6157