Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Pemasaran presisi memberikan kemampuan pada perusahaan untuk menawarkan produk-produk yang dibuat secara khusus kepada pelanggan dan memberikan kemampuan kepada perusahaan untuk menarik minat pelanggan dengan pesan-pesan pemasaran yang dibuat secara khusus. Penelitian ini menyajikan kerangka kerja pengambilan keputusan baru menggunakan teknik data mining. Pertama, penelitian ini menyajikan model tren untuk memprediksi secara akurat kuantitas pasokan bulanan; kedua, menggunakan model RFM (Recency,Frequency, Monetary) untuk memilih atribut untuk mengelompokkan pelanggan ke dalam kelompok sesuai history transaksi belanjanya; ketiga, menggunakan Algoritma K-Means untuk membuat clustering pelanggan berdasarkan data RFM masing-masing pelanggan, keempat, menggunakan Decision Tree untuk mengidentifikasi nilai atribut penting untuk membedakan kelompok pelanggan yang berbeda; dan akhirnya, dari proses data mining yang peneliti lakukan menciptakan berbagai strategi penawaran yang menargetkan setiap cluster pelanggan. Data penjualan dari Syifamart di Subang Jawa Barat, dikumpulkan dan digunakan dalam studi kasus untuk menggambarkan bagaimana mengimplementasikan kerangka yang diusulkan. Dari penelitian yang telah dilakukan menunjukan bahwa proses data mining dari history transaksi penjualan 351,158 rows, dengan agregasi berdasarkan pelanggan menggunakan metode RFM dan diekstraksi dengan menggunakan algoritma clustering k-means membentuk 4 (empat) cluster optimal. Keempat (empat) cluster tersebut diklasifikasikan dengan menggunakan algoritma decision tree sehingga Syifamart dapat mengetahui mana pelanggan potensial dan mana pelanggan yang tidak potensial. Untuk ketersediaan pasokan stok, manajemen memprediksi kebutuhan persediaan produk dengan menggunakan metode tren dimana stok di bulan selanjutnya di prediksi dengan menggunkana history penjualan di bulan sebelumnya.
Amborwati Armadyah, edi winarko. (2014). REVIEW PEMANFAATAN TEKNIK DATA MINING DALAM SEGMENTASI KONSUMEN. Prosiding Seminar Ilmiah Nasional Komputer Dan Sistem Intelijen (KOMMIT 2014), 8(Kommit), 66–73. Retrieved from https://ejournal.gunadarma.ac.id/index.php/kommit/article/view/1009
Hardiani, T., Hartanto, R., & Mada, U. G. (2017). Segmentasi Nasabah Tabungan Menggunakan Model RFM ( Recency , Frequency , Monetary ) dan K-Means Pada Lembaga Keuangan Mikro. (May), 463–468. Retrieved from https://www.researchgate.net/publication/316956918
Jupriyanto., & Nurlela, S. (2019). KERANGKA PENGAMBILAN KEPUTUSAN UNTUK PEMASARAN PRESISI MENGGUNAKAN METODE RFM, ALGORITMA K-MEANS DAN DECISION TREE. Laporan Akhir Penelitian.
Maryani, I., & Riana, D. (2017). Clustering and profiling of customers using RFM for customer relationship management recommendations. 2017 5th International Conference on Cyber and IT Service Management, 2–7. https://doi.org/10.1109/CITSM.2017.8089258
Tsiptsis K, C., & A. (2009). Data Mining Techniques in CRM.
Wardani, N. W., Dantes, G. R., Indrawan, G., Studi, P., Informasi, T., Studi, P., … Pelanggan, S. (2018). Prediksi Customer Churn Dengan Algoritma Decision Tree C4 . 5. JURNAL RESISTOR, 1(1), 16–24. Retrieved from https://ejournal.stiki-indonesia.ac.id/index.php/jurnalresistor/article/view/219
widiarina. (2013). Algoritma Cluster Dinamik Untuk Optimasi Cluster Pada Algoritma K-Means Dalam Pemetaan Nasabah Potensial Algoritma Cluster Dinamik Untuk Optimasi Cluster Pada Algoritma K-Means Dalam. Prosiding SNATIF, 1(1), 33–36. Retrieved from http://journal.ilmukomputer.org/index.php/jis/article/view/18
You, Z., Si, Y. W., Zhang, D., Zeng, X., Leung, S. C. H., & Li, T. (2015). A decision-making framework for precision marketing. Expert Systems with Applications, 42(7), 3357–3367. https://doi.org/10.1016/j.eswa.2014.12.022
Copyright (c) 2019 Jupriyanto Jupriyanto, Siti Nurlela
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.