





Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Telemarketing is a promotion that is considered effective for promoting a product to consumers by telephone, other than that telemarketing is easier to accept because of its direct nature of offering products to consumers. Telemarketing is also considered to help increase a company's revenue. The problem of predicting the success of a bank's telemarketing data must be done using machine learning techniques. Machine learning used in the available historical data is a bank dataset of 45211 instances at 17 features using the multilayer perceptron algorithm (MLP) with resampling. The use of resampling aims to balance the unbalanced data resulting in an accuracy value of 90.18% and a ROC of 0.89%. Meanwhile, if the data resampling is not used in the multilayer perceptron (MLP) algorithm, the accuracy value is 88.6 and ROC is 0.88%. The use of resampling data becomes more effective and results in higher accuracy values.
Amrin, A., & Satriadi, I. (2018). Implementasi Jaringan Syaraf Tiruan Dengan Multilayer Perceptron Untuk Analisa Pemberian Kredit. Jurnal Riset Komputer (JURIKOM), 5(6), 605–610.
Dewi, S. (2016). Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan. None, 13(1), 60–66.
Fauzi, A., Wati, F. F., Sulistyowati, I., Akbar, M. F., Rahmawati, E., & Sari, R. K. (2020). Penerapan Metode Machine Learning Dalam Memprediksi Keberhasilan Panggilan Telemarketing Menjual Produk Bank. 6(2), 213–222.
Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S. (2019). An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Computing, 23(17), 7941–7958. https://doi.org/10.1007/s00500-018-3424-2
Masturoh, S., Nugraha, F. S., Nurlela, S., Saelan, M. R. R., & Saputri, D. U. E. (2021). PREDIKSI KEBERHASILAN TELEMARKETING BANK MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON (MLP) DENGAN RESAMPLING.
Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62, 22–31. https://doi.org/10.1016/j.dss.2014.03.001
Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458
Pratiwi, P. G., Putra, I. K. G. D., & Putri, D. P. S. (2019). Peramalan Jumlah Tersangka Penyalahgunaan Narkoba Menggunakan Metode Multilayer Perceptron. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 7(2), 143. https://doi.org/10.24843/jim.2019.v07.i02.p06
Pujianto, U. (2016). Strategi Resampling Berbasis Centroid Untuk Menangani Lunak. Teknno, 25(Maret), 1–6.
Purbaya, M. E., Nugraha, A. F., Gustina, S., & Azis, M. K. (2020). Meta-Algorithms untuk Meningkatkan Kinerja Klasifikasi dalam Keberhasilan Telemarketing Perbankan. Techno.Com, 19(4), 385–396. https://doi.org/10.33633/tc.v19i4.3725
Purnama, N., Putra, I. K. G. D., & Bayupati, P. A. (2014). Klasifikasi Website Menggunakan Algoritma Multilayer Perceptron. Teknologi Elektro, 13(2), 9–15.
Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron: Architecture Optimization and Training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26. https://doi.org/10.9781/ijimai.2016.415
Saputra, E. P. (2017). Prediksi Keberhasilan Telemarketing Bank Untuk. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 2(2), 66–72.
Shelke, M. S., Deshmukh, P. R., & Shandilya, P. V. K. (2017). A Review on Imbalanced Data Handling Using Undersampling and Oversampling Technique. International Journal of Recent Trends in Engineering and Research, 3(4), 444–449. https://doi.org/10.23883/ijrter.2017.3168.0uwxm
Sulaehani, R. (2016). Prediksi Keputusan Klien Telemarketing Untuk Deposito Pada Bank Menggunakan Algoritma Naive Bayes Berbasis Backward Elimination. ILKOM Jurnal Ilmiah, 8(3), 182–189. https://doi.org/10.33096/ilkom.v8i3.83.182-189
Vajiramedhin, C., & Suebsing, A. (2014). Feature selection with data balancing for prediction of bank telemarketing. Applied Mathematical Sciences, 8(113–116), 5667–5672. https://doi.org/10.12988/ams.2014.47222
Copyright (c) 2021 Siti Masturoh, Fitra Septia Nugraha, Siti Nurlela, M. Rangga Ramadhan Saelan, Daniati Uki Eka Saputri, Ridan Nurfalah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to the PILAR Nusa Mandiri journal as the publisher of the journal, and the author also holds the copyright without restriction.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases, and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , are allowed with written permission from the PILAR Nusa Mandiri journal.
PILAR Nusa Mandiri journal, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal. In any way, the contents of the articles and advertisements published in the PILAR Nusa Mandiri journal are the sole and exclusive responsibility of their respective authors and advertisers.
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.