Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
DANA e-Wallet or digital wallet application can be downloaded on the Android platform via Google Play, and google play itself provides a review column. The public will usually see reviews on Google Play before they download an application because the information obtained through these reviews is considered effective in providing information, problems regarding reviews or sentiment analysis of the application must be processed using text mining. Text mining in this study uses k-nearest neighbor by testing 3 classes based on star rating, the first class consists of 1-5 stars, the second class consists of (1 & 5 stars, 3rd class consists of labeling stars (1 & 2) negative label, 3 neutral labels, as well as 4 & 5 stars positive labels) and testing the value of k 1-10 so that the highest accuracy value is obtained with class 2 (1 star and 5 stars) and the best test at k 1 value is obtained the accuracy result of 86.64%
Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118
Adhine Salsabila, K. D., Ghiffarie, A., Baistama, R. P., Variadi, M. I., & Rhajendra, M. D. (2019). Analisis Sentimen Terhadap Produk The Body Shop Tea Tree Oil. Jurnal Teknologi Dan Manajemen Informatika, 5(2). https://doi.org/10.26905/jtmi.v5i2.3684
Aulia, S. (2020). Pola Perilaku Konsumen Digital Dalam Memanfaatkan Aplikasi Dompet Digital. Jurnal Komunikasi, 12(2), 311. https://doi.org/10.24912/jk.v12i2.9829
Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. INTEGER: Journal of Information Technology, 2(1), 32–41. https://ejurnal.itats.ac.id/integer/article/view/95
Cahyani, A. D., & Mardiana, T. (2020). Sentiment Analysis of Digital Wallet Service Users Using Naïve Bayes Classifier and Particle Swarm Optimization. Jurnal Riset Informatika, 2(4), 241–250. https://doi.org/10.34288/jri.v2i4.160
Deviyanto, A., & Wahyudi, M. D. R. (2018). Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor. JISKA (Jurnal Informatika Sunan Kalijaga), 3(1), 1. https://doi.org/10.14421/jiska.2018.31-01
Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. Jurnal Khatulistiwa Informatika, VI(1), 64–69.
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Gunawan, F., Fauzi, M. A., & Adikara, P. P. (2017). Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile). Systemic: Information System and Informatics Journal, 3(2), 1–6. https://doi.org/10.29080/systemic.v3i2.234
Inggiharti, N. (2020). Pengaruh Electronic Wallet Terhadap Kegiatan Keuangan Indonesia (Perbandingan Aplikasi Electronic Wallet Milik Perusahaan Financial Technology terhadap Aplikasi Electronic Wallet Milik BUMN). University Of Bengkulu Law Journal, 5(1), 74–88.
Kesumastuti, T. M. (2020). The Process of Adoption Interest in Using Digital Wallet in Central Jakarta ( Case Study on Go-Pay Users ). International Journal of Multicultural and Multireligious Understanding, 7(2), 277–286.
Kristiyanti, D. A., Putri, D. A., Indrayuni, E., Nurhadi, A., & Umam, A. H. (2020). E-Wallet Sentiment Analysis Using Naïve Bayes and Support Vector Machine Algorithm. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012079
Kusnawan, A., Diana, S., Andy, A., & Tjong, S. (2019). Pengaruh Diskon pada Aplikasi e-Wallet terhadap Pertumbuhan Minat Pembelian Impulsif Konsumen Milenial di Wilayah Tangerang. Sains Manajemen, 5(2), 137–160. https://doi.org/10.30656/sm.v5i2.1861
Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270
Masturoh, S., & Pohan, A. B. (2021). Analisis Sentimen Terhadap E-Wallet DANA Pada Ulasan Google Play Menggunakan Algoritma K-Nearest Neighbor (KNN).
Pristiyanti, R. I., Fauzi, M. A., & Muflikhah, L. (2018). Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(3), 1179–1186.
Puspita, Y. C. (2019). Analisis Kesesuaian Teknologi Penggunaan Digital Payment Pada Aplikasi Ovo. Jurnal Manajemen Informatika, 09(02), 121–128.
Putra, M. W. A., Susanti, Erlin, & Herwin. (2020). Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier. IT Journal Research and Development, 5(1), 72–86. https://doi.org/10.25299/itjrd.2020.vol5(1).5159
Saidah, S., & Mayary, J. (2020). Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode Lexicon Based Dan K – Nearest Neighbor. Jurnal Ilmiah Informatika Komputer, 25(1), 1–17. https://doi.org/10.35760/ik.2020.v25i1.2411
Salam, A., Zeniarja, J., & Khasanah, R. S. U. (2018). Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia). Prosiding SINTAK, 480–486.
Copyright (c) 2021 Siti Masturoh, Achmad Baroqah Pohan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.