Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Human survival, one of the roles that is controlled by the heart, makes the heart need to be guarded and be aware of its damage. Heart failure is the final stage of all heart disease. The medical record tool can measure symptoms, body features, and clinical laboratory test values, which can be used to perform biostatistical analyzes but to highlight patterns and correlations not detected by medical doctors. So technology assistance is needed to do this in order to predict the survival of heart failure patients. With data mining techniques used in the available history data, namely the Heart Failure Clinical Records dataset of 299 instances on 13 features used the Random Forest algorithm, Decision Tree, KNN, Support Vector Machine, Artificial Neural Network and Naïve Bayes with resample and SMOTE sampling techniques. The highest accuracy with the resample sampling technique in the random forest is 94.31% and the SMOTE technique used in the random forest produces an accuracy of 85.82% higher than other algorithms.
Informatics Engineering Study Program
Information Systems Study Program
Computer Technology Study Program
Informatics Engineering Study Program
Informatics Engineering Study Program
Information Systems Study Program
Aeni, W. N., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi data mining naïve bayes berbasis Particle Swarm Optimization untuk deteksi penyakit jantung. Jurnal Pseudocode, 1(1), 11–14.
Ahmad, T., Munir, A., Bhatti, S. H., Aftab, M., & Raza, M. A. (2017). Survival analysis of heart failure patients : A case study. PLOS ONE, 20(July), 1–8. https://doi.org/10.1371/journal.pone.0181001
Chicco, D. (2020). Heart failure clinical records Data Set. Retrieved from UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records
Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(16), 1–16. https://doi.org/10.1186/s12911-020-1023-5
Frieden, T. R., & Berwick, D. M. (2011). The “Million Hearts” Initiative — Preventing Heart Attacks and Strokes. The NEW ENGLAND JOURNAL of MEDICINE, 27(1), 1–4. https://doi.org/10.1056/NEJMp1110421
Hamzah, R. (2016). Hubungan usia dan jenis kelamin dengan kualitas hidup pada penderita gagal jantung di RS PKU Muhammadiyah Yogyakarta. Universitas ‘Aisyiyah Yogyakarta.
Imaligy, E. U. (2014). Gagal Jantung pada Geriatri. CDK-212, 41(1), 19–24.
Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada Cv . Papadan Mama Pastries. Jurnal Mantik Penusa, 1(2), 16–21.
Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 1(1), 27–31.
Putri, S. A. (2017). INTEGRASI TEKNIK SMOTE BAGGING DENGAN INFORMATION GAIN PADA NAIVE BAYES UNTUK PREDIKSI CACAT SOFTWARE. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 2(2), 22–31.
Rahayu, S., Purnama, J. J., Pohan, A. B., Nugraha, F. S., Nurdiani, S., Hadianti, S., … Informatika, S. (2020). Laporan Akhir Penelitian Mandiri. Jakarta.
Rozie, F., Hadary, F., & Wigyarianto, F. T. P. (2016). Rancang Bangun Alat Monitoring Jumlah Denyut Nadi / Jantung Berbasis Android. Jurnal Teknik Elektro Universitas Tanjungpura, 1(1), 1–10.
Sartika, D., & Sensuse, D. I. (2017). Perbandingan Algoritma Klasifikasi Naive Bayes , Nearest Neighbour , dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. Jatisi, 1(2), 151–161.
Setiawati, D., Taufik, I., Jumadi, & Z, W. B. (2016). Klasifikasi Terjemahan Ayat Al-Quran Tentang Ilmu Sains Menggunakan Algoritma Decision Tree Berbasis Mobile. Jurnal Online Informatika, I(1), 24–27.
Shelke, M. S., Deshmukh, P. R., & Shandilya, P. V. K. (2017). A Review on Imbalanced Data Handling Using Undersampling and Oversampling Technique. International Journal of Recent Trends in Engineering & Research (IJRTER), 3(4), 444–449.
Somantri, O., Wiyono, S., & Dairoh. (2016). Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine ( SVM ). Scientific Journal of Informatics, 3(1), 34–45.
Syukri, & Samsuddin. (2018). Pengujian Algoritma Artificial Neural Network (ANN) Untuk Prediksi Kecepatan Angin. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 2(I), 43–47.
Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests Estimation and Inference of Heterogeneous Treatment Effects using Random Forests ABSTRACT. Journal Of The American Statistical Association, 1459. https://doi.org/10.1080/01621459.2017.1319839
Copyright (c) 2020 Sri Rahayu, Jajang Jaya Purnama, Achmad Baroqah Pohan, Fitra Septia Nugraha, Siti Nurdiani, Sri Hadianti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.