PREDICTION OF SURVIVAL OF HEART FAILURE PATIENTS USING RANDOM FOREST

  • Sri Rahayu Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Jajang Jaya Purnama Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Achmad Baroqah Pohan Universitas Bina Sarana Informatika
  • Fitra Septia Nugraha Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Siti Nurdiani Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Sri Hadianti Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
Keywords: SMOTE, random forest, data mining, heart failure, resampling

Abstract

Human survival, one of the roles that is controlled by the heart, makes the heart need to be guarded and be aware of its damage. Heart failure is the final stage of all heart disease. The medical record tool can measure symptoms, body features, and clinical laboratory test values, which can be used to perform biostatistical analyzes but to highlight patterns and correlations not detected by medical doctors. So technology assistance is needed to do this in order to predict the survival of heart failure patients. With data mining techniques used in the available history data, namely the Heart Failure Clinical Records dataset of 299 instances on 13 features used the Random Forest algorithm, Decision Tree, KNN, Support Vector Machine, Artificial Neural Network and Naïve Bayes with resample and SMOTE sampling techniques. The highest accuracy with the resample sampling technique in the random forest is 94.31% and the SMOTE technique used in the random forest produces an accuracy of 85.82% higher than other algorithms.

 

Downloads

Download data is not yet available.

Author Biographies

Sri Rahayu, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Informatics Engineering Study Program

Jajang Jaya Purnama, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Information Systems Study Program

Achmad Baroqah Pohan, Universitas Bina Sarana Informatika

Computer Technology Study Program

Fitra Septia Nugraha, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Informatics Engineering Study Program

Siti Nurdiani, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Informatics Engineering Study Program

Sri Hadianti, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Information Systems Study Program

References

Aeni, W. N., Santosa, S., & Supriyanto, C. (2014). Algoritma Klasifikasi data mining naïve bayes berbasis Particle Swarm Optimization untuk deteksi penyakit jantung. Jurnal Pseudocode, 1(1), 11–14.

Ahmad, T., Munir, A., Bhatti, S. H., Aftab, M., & Raza, M. A. (2017). Survival analysis of heart failure patients : A case study. PLOS ONE, 20(July), 1–8. https://doi.org/10.1371/journal.pone.0181001

Chicco, D. (2020). Heart failure clinical records Data Set. Retrieved from UCI Machine Learning Repository website: https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records

Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(16), 1–16. https://doi.org/10.1186/s12911-020-1023-5

Frieden, T. R., & Berwick, D. M. (2011). The “Million Hearts” Initiative — Preventing Heart Attacks and Strokes. The NEW ENGLAND JOURNAL of MEDICINE, 27(1), 1–4. https://doi.org/10.1056/NEJMp1110421

Hamzah, R. (2016). Hubungan usia dan jenis kelamin dengan kualitas hidup pada penderita gagal jantung di RS PKU Muhammadiyah Yogyakarta. Universitas ‘Aisyiyah Yogyakarta.

Imaligy, E. U. (2014). Gagal Jantung pada Geriatri. CDK-212, 41(1), 19–24.

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada Cv . Papadan Mama Pastries. Jurnal Mantik Penusa, 1(2), 16–21.

Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 1(1), 27–31.

Putri, S. A. (2017). INTEGRASI TEKNIK SMOTE BAGGING DENGAN INFORMATION GAIN PADA NAIVE BAYES UNTUK PREDIKSI CACAT SOFTWARE. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 2(2), 22–31.

Rahayu, S., Purnama, J. J., Pohan, A. B., Nugraha, F. S., Nurdiani, S., Hadianti, S., … Informatika, S. (2020). Laporan Akhir Penelitian Mandiri. Jakarta.

Rozie, F., Hadary, F., & Wigyarianto, F. T. P. (2016). Rancang Bangun Alat Monitoring Jumlah Denyut Nadi / Jantung Berbasis Android. Jurnal Teknik Elektro Universitas Tanjungpura, 1(1), 1–10.

Sartika, D., & Sensuse, D. I. (2017). Perbandingan Algoritma Klasifikasi Naive Bayes , Nearest Neighbour , dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. Jatisi, 1(2), 151–161.

Setiawati, D., Taufik, I., Jumadi, & Z, W. B. (2016). Klasifikasi Terjemahan Ayat Al-Quran Tentang Ilmu Sains Menggunakan Algoritma Decision Tree Berbasis Mobile. Jurnal Online Informatika, I(1), 24–27.

Shelke, M. S., Deshmukh, P. R., & Shandilya, P. V. K. (2017). A Review on Imbalanced Data Handling Using Undersampling and Oversampling Technique. International Journal of Recent Trends in Engineering & Research (IJRTER), 3(4), 444–449.

Somantri, O., Wiyono, S., & Dairoh. (2016). Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine ( SVM ). Scientific Journal of Informatics, 3(1), 34–45.

Syukri, & Samsuddin. (2018). Pengujian Algoritma Artificial Neural Network (ANN) Untuk Prediksi Kecepatan Angin. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 2(I), 43–47.

Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests Estimation and Inference of Heterogeneous Treatment Effects using Random Forests ABSTRACT. Journal Of The American Statistical Association, 1459. https://doi.org/10.1080/01621459.2017.1319839

Published
2020-09-15
How to Cite
Rahayu, S., Purnama, J., Pohan, A., Nugraha, F., Nurdiani, S., & Hadianti, S. (2020). PREDICTION OF SURVIVAL OF HEART FAILURE PATIENTS USING RANDOM FOREST. Jurnal Pilar Nusa Mandiri, 16(2), 255-260. https://doi.org/10.33480/pilar.v16i2.1665

Most read articles by the same author(s)