MACHINE LEARNING FOR EMPLOYMENT POSITION MAPPING

Authors

  • Sena Aditia Apriadi Universitas Muhammadiyah Kuningan
  • Hilman Ferdinandus Pardede National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.33480/pilar.v21i2.3028

Keywords:

bagged decision tree, employees, machine learning, organizational performance, predictive analytics

Abstract

Employee performance directly impacts organizational efficiency, yet traditional HR analytics often lack predictive precision. This study bridges HR theory and machine learning by evaluating tree-based algorithms for employee data analysis. Using a dataset of 15,227 employee records, we tested the Bagged Decision Tree algorithm, focusing on variables such as talent, career values, and aspirations. The Bagged Decision Tree achieved 98.65% accuracy, with talent and career values as key predictors. Excluding aspiration values reduced accuracy slightly to 98.57%, while excluding career values lowered it significantly to 92.13%. These findings highlight the robustness of the Bagged Decision Tree in HR analytics and emphasize the importance of variable selection, particularly career values and talent, in predicting performance outcomes. Future work should further explore real-world implementation challenges.

Downloads

Download data is not yet available.

References

Aurelia, J., & Rustam, Z. (2021). A Hybrid Convolutional Neural Network-Support Vector Machine for X-ray Computed Tomography Images on CancerA Hybrid Convolutional Neural Network-Support Vector Machine for X-ray Computed Tomography Images on Cancer. Open Access Macedonian Journal of Medical Sciences, 9(B), 1283–1289. https://doi.org/10.3889/oamjms.2021.6955

Fauzi, A., Wati, F. F., Sulistyowati, I., Akbar, M. F., Rahmawati, E., & Sari, R. K. (2020). Penerapan Metode Machine Learning Dalam Memprediksi Keberhasilan Panggilan Telemarketing Menjual Produk Bank. Indonesian Journal on Software Engineering (IJSE), 6(2), 213–222. https://doi.org/10.31294/ijse.v6i2.8977

Fitriyadi, A. U. & Kurniawati A. (2021). Algoritma K-Means dan K-Medoids Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional. KILAT, 10(1), 157–168. https://doi.org/10.33322/kilat.v10i1.1174

Ghahremani nahr, J., Nozari, H., & Sadeghi, M. E. (2021). Artificial intelligence and Machine Learning for Real-world problems (A survey). International Journal of Innovation in Engineering, 1(3), 38–47. https://doi.org/10.59615/ijie.1.3.38

Intern, D. (2020, Agustus 19). www.dicoding.com. (Dicoding Company) Retrieved Desember 11, 2021, from https://www.dicoding.com/blog/machine-learning-adalah/

Islamy, F. J., Yuniarsih, T., Ahman, E., & Kusnendi. (2021). Efektivitas organisasi berbasis manajemen pengetahuan dalam perspektif perilaku organisasi. Gracias Logis Kreatif.

Kang, E., & Lee, H. (2021). Employee Compensation Strategy as Sustainable Competitive Advantage for HR Education Practitioners. Sustainability, 13(3), 1049. https://doi.org/10.3390/su13031049

KBBI. (n.d.). Jabatan. Kamus Besar Bahasa Indonesia (KBBI) Online. Diakses 29 Agustus 2025, dari https://kbbi.web.id/jabatan

Kodithuwakku, S., & Priyanath, H. M. S. (2022). Impact of Intellectual Human Capital and Knowledge Acquisition Capabilities on Financial Performances of Indigenous Craft Industries in Sri Lanka. Sri Lanka Journal of Social Sciences and Humanities, 2(2), 93–104. https://doi.org/10.4038/sljssh.v2i2.76

Malek, N. H. A., Yaacob, W. F. W., Wah, Y. B., Md Nasir, S. A., Shaadan, N., & Indratno, S. W. (2022). Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data. Indonesian Journal of Electrical Engineering and Computer Science, 29(1), 598. https://doi.org/10.11591/ijeecs.v29.i1.pp598-608

Nosratabadi, S., Zahed, R. K., Ponkratov, V. V., & Kostyrin, E. V. (2022). Artificial Intelligence Models and Employee Lifecycle Management: A Systematic Literature Review. Organizacija, 55(3), 181–198. https://doi.org/10.2478/orga-2022-0012

Pamungkas, Y. W., Adiwijaya, A., & Utama, D. Q. (2020). Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 1(2), 69. https://doi.org/10.30865/json.v1i2.1789

Redjeki, S., Damayanti, A., Hudianti, E., & Nasyuha, A. H. (2024). Implementation of Classification Decision Tree and C4.5 Algorithm in selecting Insurance Products. Sinkron, 9(1), 600–608. https://doi.org/10.33395/sinkron.v9i1.13444

Raharja, A. D. (2022, January 11). www.ekrut.com. (EKRUT) Retrieved January 11, 2022, from https://www.ekrut.com/media/apa-itu-machine-learning

Rahimi, A., Dharma, A. S., & Norrahman, M. F. (2025). Kinerja pegawai pada Dinas Kesehatan Kabupaten Balangan Provinsi Kalimantan Selatan. AL IIDARA BALAD: Jurnal Administrasi Negara, 7(1), 11–21. https://doi.org/10.36658/aliidarabalad.7.1.1313

Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1). https://doi.org/10.31294/ijcit.v5i1.7951

Shlash Mohammad, A. A., Alkhazali, Z., Shelash Mohammad, S. I., Al Oraini, B., Vasudevan, A., Alqahtani, M. M., & Alshurideh, M. T. (2025). Machine Learning Models for Predicting Employee Attrition: A Data Science Perspective. Data and Metadata, 4, 669. https://doi.org/10.56294/dm2025669

Downloads

Published

2025-09-23

How to Cite

Apriadi, S. A., & Pardede, H. F. . (2025). MACHINE LEARNING FOR EMPLOYMENT POSITION MAPPING. Jurnal Pilar Nusa Mandiri, 21(2), 266–272. https://doi.org/10.33480/pilar.v21i2.3028