
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri 
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Employee performance directly impacts organizational efficiency, yet traditional HR analytics often lack predictive precision. This study bridges HR theory and machine learning by evaluating tree-based algorithms for employee data analysis. Using a dataset of 15,227 employee records, we tested the Bagged Decision Tree algorithm, focusing on variables such as talent, career values, and aspirations. The Bagged Decision Tree achieved 98.65% accuracy, with talent and career values as key predictors. Excluding aspiration values reduced accuracy slightly to 98.57%, while excluding career values lowered it significantly to 92.13%. These findings highlight the robustness of the Bagged Decision Tree in HR analytics and emphasize the importance of variable selection, particularly career values and talent, in predicting performance outcomes. Future work should further explore real-world implementation challenges.
Aurelia, J., & Rustam, Z. (2021). A Hybrid Convolutional Neural Network-Support Vector Machine for X-ray Computed Tomography Images on CancerA Hybrid Convolutional Neural Network-Support Vector Machine for X-ray Computed Tomography Images on Cancer. Open Access Macedonian Journal of Medical Sciences, 9(B), 1283–1289. https://doi.org/10.3889/oamjms.2021.6955
Fauzi, A., Wati, F. F., Sulistyowati, I., Akbar, M. F., Rahmawati, E., & Sari, R. K. (2020). Penerapan Metode Machine Learning Dalam Memprediksi Keberhasilan Panggilan Telemarketing Menjual Produk Bank. Indonesian Journal on Software Engineering (IJSE), 6(2), 213–222. https://doi.org/10.31294/ijse.v6i2.8977
Fitriyadi, A. U. & Kurniawati A. (2021). Algoritma K-Means dan K-Medoids Analisis Algoritma K-Means dan K-Medoids Untuk Clustering Data Kinerja Karyawan Pada Perusahaan Perumahan Nasional. KILAT, 10(1), 157–168. https://doi.org/10.33322/kilat.v10i1.1174
Ghahremani nahr, J., Nozari, H., & Sadeghi, M. E. (2021). Artificial intelligence and Machine Learning for Real-world problems (A survey). International Journal of Innovation in Engineering, 1(3), 38–47. https://doi.org/10.59615/ijie.1.3.38
Intern, D. (2020, Agustus 19). www.dicoding.com. (Dicoding Company) Retrieved Desember 11, 2021, from https://www.dicoding.com/blog/machine-learning-adalah/
Islamy, F. J., Yuniarsih, T., Ahman, E., & Kusnendi. (2021). Efektivitas organisasi berbasis manajemen pengetahuan dalam perspektif perilaku organisasi. Gracias Logis Kreatif.
Kang, E., & Lee, H. (2021). Employee Compensation Strategy as Sustainable Competitive Advantage for HR Education Practitioners. Sustainability, 13(3), 1049. https://doi.org/10.3390/su13031049
KBBI. (n.d.). Jabatan. Kamus Besar Bahasa Indonesia (KBBI) Online. Diakses 29 Agustus 2025, dari https://kbbi.web.id/jabatan
Kodithuwakku, S., & Priyanath, H. M. S. (2022). Impact of Intellectual Human Capital and Knowledge Acquisition Capabilities on Financial Performances of Indigenous Craft Industries in Sri Lanka. Sri Lanka Journal of Social Sciences and Humanities, 2(2), 93–104. https://doi.org/10.4038/sljssh.v2i2.76
Malek, N. H. A., Yaacob, W. F. W., Wah, Y. B., Md Nasir, S. A., Shaadan, N., & Indratno, S. W. (2022). Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data. Indonesian Journal of Electrical Engineering and Computer Science, 29(1), 598. https://doi.org/10.11591/ijeecs.v29.i1.pp598-608
Nosratabadi, S., Zahed, R. K., Ponkratov, V. V., & Kostyrin, E. V. (2022). Artificial Intelligence Models and Employee Lifecycle Management: A Systematic Literature Review. Organizacija, 55(3), 181–198. https://doi.org/10.2478/orga-2022-0012
Pamungkas, Y. W., Adiwijaya, A., & Utama, D. Q. (2020). Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 1(2), 69. https://doi.org/10.30865/json.v1i2.1789
Redjeki, S., Damayanti, A., Hudianti, E., & Nasyuha, A. H. (2024). Implementation of Classification Decision Tree and C4.5 Algorithm in selecting Insurance Products. Sinkron, 9(1), 600–608. https://doi.org/10.33395/sinkron.v9i1.13444
Raharja, A. D. (2022, January 11). www.ekrut.com. (EKRUT) Retrieved January 11, 2022, from https://www.ekrut.com/media/apa-itu-machine-learning
Rahimi, A., Dharma, A. S., & Norrahman, M. F. (2025). Kinerja pegawai pada Dinas Kesehatan Kabupaten Balangan Provinsi Kalimantan Selatan. AL IIDARA BALAD: Jurnal Administrasi Negara, 7(1), 11–21. https://doi.org/10.36658/aliidarabalad.7.1.1313
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1). https://doi.org/10.31294/ijcit.v5i1.7951
Shlash Mohammad, A. A., Alkhazali, Z., Shelash Mohammad, S. I., Al Oraini, B., Vasudevan, A., Alqahtani, M. M., & Alshurideh, M. T. (2025). Machine Learning Models for Predicting Employee Attrition: A Data Science Perspective. Data and Metadata, 4, 669. https://doi.org/10.56294/dm2025669
Copyright (c) 2025 Sena Aditia Apriadi, Hilman Ferdinandus Pardede

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:

Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri 
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.