






Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
The growing volume of global waste poses a significant challenge for effective waste management, particularly in developing countries where awareness and practices around waste sorting remain limited. This study aims to enhance elementary school students' understanding and efficiency in sorting organic and inorganic waste using an interactive, AI-powered educational tool. The proposed system, WasteWise, integrates YOLOv8 for real-time object detection and ESP32-CAM for capturing waste images. A pre-test and post-test experimental design was conducted to assess students’ performance before and after using the system. The results showed a notable improvement in sorting accuracy, increasing from 60% with manual sorting to 90% using the WasteWise system, alongside reduced sorting time. These findings highlight the system's potential not only as an automated waste classification tool but also as a cost-effective and engaging platform for promoting environmental awareness and digital literacy among young learners.
Abar, C. A. A. P., Dos Santos Dos Santos, J. M. & Almeida, M. V. de. (2021). Computational Thinking in Basic School in the Age of Artificial Intelligence: Where is the Teacher? Acta Scientiae, 23(6), 270–299. https://doi.org/10.17648/acta.scientiae.6869
Apriyani, R. K., Rustanti, N., Rahayu, D. P. & Hamid, N. D. U. (2023). SOSIALISASI PENGENALAN DAN PEMILAHAN JENIS SAMPAH ORGANIK DAN ANORGANIK DI PANTI ASUHAN ANAK SHALEH. Jurnal Pengabdian Kepada Masyarakat, 2, 43–60. https://jurnal.politeknikpajajaran.ac.id/index.php/pengmas/article/view/46/34
Bawankule, R., Gaikwad, V., Kulkarni, I., Kulkarni, S., Jadhav, A. & Ranjan, N. (2023). Visual Detection of Waste using YOLOv8. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 869–873. https://doi.org/10.1109/ICSCSS57650.2023.10169688
Fang, B., Yu, J., Chen, Z., Osman, A. I., Farghali, M., Ihara, I., Hamza, E. H., Rooney, D. W. & Yap, P.-S. (2023). Artificial intelligence for waste management in smart cities: a review. Environmental Chemistry Letters, 21(4), 1959–1989. https://doi.org/10.1007/s10311-023-01604-3
Ghatkamble, R., D, P. B. & Pareek, P. K. (2022). YOLO Network Based Intelligent Municipal Waste Management in Internet of Things. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), 1–10. https://doi.org/10.1109/ICERECT56837.2022.10060062
Global Waste Management Outlook 2024 - Beyond an age of waste: Turning rubbish into a resource. (2024). United Nations Environment Programme. https://doi.org/10.59117/20.500.11822/44939
Gustiani, D. & Anshori, I. F. (2021). Perancangan Game Edukasi Pengenalan Sampah Organik Dan Anorganik Di Lingkungan TKIT Bustanul’Ulum. 2(2). https://eprosiding.ars.ac.id/index.php/pti/article/view/451/245
Kang, K.-A., Kim, S.-J. & Kang, S. R. (2022). Elementary school students’ awareness of the use of artificial intelligence chatbots in violence prevention education in South Korea: a descriptive study. Child Health Nursing Research, 28(4), 291–298. https://doi.org/10.4094/chnr.2022.28.4.291
Kumar Lilhore, U., Simaiya, S., Dalal, S., Radulescu, M. & Balsalobre-Lorente, D. (2024). Intelligent waste sorting for sustainable environment: A hybrid deep learning and transfer learning model. Gondwana Research. https://doi.org/10.1016/j.gr.2024.07.014
Lin, P., Zhao, F., Wang, X. & Chen, Y. (2024). Initiating a novel elementary school artificial intelligence-related image recognition curricula. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19982-3
Lin, W. (2021). YOLO-Green: A Real-Time Classification and Object Detection Model Optimized for Waste Management. 2021 IEEE International Conference on Big Data (Big Data), 51–57. https://doi.org/10.1109/BigData52589.2021.9671821
Natalia Marpaung, D., Iriyanti, Y. & Prayoga, D. (2022). Analisis Faktor Penyebab Perilaku Buang Sampah Sembarangan Pada Masyarakat Desa Kluncing, Banyuwangi (Vol. 13). http://jurnal.fkm.untad.ac.id/index.php/preventif
Sai Susanth, G., Jenila Livingston, L. M. & Agnel Livingston, L. G. X. (2021). Garbage Waste Segregation Using Deep Learning Techniques. IOP Conference Series: Materials Science and Engineering, 1012(1), 012040. https://doi.org/10.1088/1757-899X/1012/1/012040
Sinha, N., Evans, R. F. & Carbo, M. (2023). Hands-on Active Learning Approach to Teach Artificial Intelligence/Machine Learning to Elementary and Middle School Students. 2023 32nd Wireless and Optical Communications Conference (WOCC), 1–6. https://doi.org/10.1109/WOCC58016.2023.10139678
Ultralytics. (2023, November 14). YOLOv8 documentation. Retrieved April 30, 2025, from https://docs.ultralytics.com/models/yolov8/
Urlamma, D., Amani, V., Mounika, G. & Devakumari, K. (2024). Automatic Garbage Classification Using YOLOV8. IARJSET, 11(3). https://doi.org/10.17148/IARJSET.2024.11317
Viswanathan, R. & Telukdarie, A. (2022). The role of 4IR technologies in waste management practices-a bibliographic analysis. Procedia Computer Science, 200, 247–256. https://doi.org/10.1016/j.procs.2022.01.223
Wibysono, A. Y., Susilawati, H. & Matin, I. M. M. (2022). Rancang Bangun Alat Pemilah Sampah Organik dan Non Organik Berbasis Raspberry Pi. Fuse-Teknik Elektro, 2(2), 88. https://doi.org/10.52434/jft.v2i2.2338
Zhao, R., Zeng, Q., Zhan, L. & Chen, D. (2024). Multi-target detection of waste composition in complex environments based on an improved YOLOX-S model. Waste Management, 190, 398–408. https://doi.org/10.1016/j.wasman.2024.10.005
Copyright (c) 2025 Kenny Aldi, Yan Rianto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.