COMPARATIVE ANALYSIS OF RANDOM FOREST AND SUPPORT VECTOR CLASSIFIER FOR PREDICTING STUDENTS’ ON-TIME GRADUATION

Penulis

  • Nurus Sarifatul Ngaeni STIMIK Tunas Bangsa Banjarnegara

DOI:

https://doi.org/10.33480/pilar.v21i2.7048

Kata Kunci:

machine learning algorithms, on-time graduation, student data analysis, study duration

Abstrak

On-time graduation is one of the key indicators of educational quality in higher education. The influencing factors range from students’ internal issues and academic abilities to institutional policies. However, academic management has not yet been able to classify the data and analyze the underlying factors contributing to delayed graduation. By identifying these factors, management can formulate appropriate academic solutions or policies. The purpose of this study is to build a prediction model for on-time graduation using machine learning algorithms. This study compares the classification performance of the Random Forest algorithm and the Support Vector Classifier (SVC). The dataset, consisting of 1,298 student records, includes academic data such as study program, GPA, TOEFL score, cohort year, and study duration. Model performance was evaluated using accuracy, F1 score, and ROC-AUC metrics, followed by a confusion matrix analysis. The final evaluation revealed that the Random Forest algorithm achieved the best performance, with an accuracy of 91.86%, an F1 score of 91.86%, and a ROC-AUC of 97.39%. Meanwhile, the SVC model obtained an accuracy of 81.12% and an F1 score of 81.09%. Based on these results, it can be concluded that the Random Forest algorithm is more reliable as a prediction model in the academic domain. The main contribution of this study is the development of an early detection system for students at risk of delayed graduation. Furthermore, the findings can serve as a basis for designing more solution-oriented academic policies in accordance with the conditions at STIMIK Tunas Bangsa Banjarnegara.

Unduhan

Data unduhan belum tersedia.

Referensi

Darmawan, A., Yudhisari, I., Anwari, A., & Makruf, M. (2023). Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(1), 387–400. https://doi.org/10.33395/jmp.v12i1.12388

Dewi, A. C., Hermawan, A., & Avianto, D. (2024). Classification of Customers’ Repeat Order Probability Using Decision Tree, Naïve Bayes and Random Forest. Jurnal Pilar Nusa Mandiri, 20(1), 52–59. https://doi.org/10.33480/pilar.v20i1.5243

Diantika, S., Nalatissifa, H., Maulidah, N., Supriyadi, R., & Fauzi, A. (2024). Penerapan Teknik Random Oversampling Untuk Memprediksi Ketepatan Waktu Lulus Menggunakan Algoritma Random Forest. Computer Science (CO-SCIENCE), 4(1), 11–18. https://doi.org/10.31294/coscience.v4i1.1996

Ermamtita, E., & Hafyz, H. (2025). Prediksi Kelulusan Mahasiswa Menggunakan Metode K-Means dan Random Forest. Jurnal Pendidikan Dan Teknologi Indonesia, 5(1), 209–214. https://doi.org/10.52436/1.jpti.577

Hairani, H. (2021). Peningkatan Kinerja Metode SVM Menggunakan Metode KNN Imputasi dan K-Means-Smote untuk Klasifikasi Kelulusan Mahasiswa Universitas Bumigora. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 713–718. https://doi.org/10.25126/jtiik.2021843428

Hermanto, D., Ricoida, D. I., Pibriana, D., & Pribadi, M. R. (2024). Analysis of Student Graduation Prediction Using Machine Learning Techniques on an Imbalanced Dataset: An Approach to Address Class Imbalance. Scientific Journal of Informatics, 11(3), 559–568. https://doi.org/10.15294/sji.v11i3.5528

Imran, B., Hambali, H., Subki, A., Zaeniah, Z., Yani, A., & Alfian, M. R. (2022). Data Mining Using Random Forest, Naïve Bayes, and Adaboost Models for Prediction and Classification of Benign and Malignant Breast Cancer. Jurnal Pilar Nusa Mandiri, 18(1), 37–46. https://doi.org/10.33480/pilar.v18i1.2912

Kartini, Fetty Tri Anggraeny, Aang Kisnu Darmawan, Anik Anekawati, & Ivana Yudhisari. (2023). Early Prediction for Graduation of Private High School Students with Machine Learning Approach. Technium: Romanian Journal of Applied Sciences and Technology, 16, 129–136. https://doi.org/10.47577/technium.v16i.9971

Law, T. J., Ting, C. Y., Ng, H., Goh, H. N., & Albert, Q. (2024). A Review of Graduate on Time Prediction. International Journal on Advanced Science, Engineering and Information Technology, 14(6), 1957–1966. https://doi.org/10.18517/ijaseit.14.6.17475

Lestari, W., Abdullah, A. S., Amin, A. M. A., Nurfaridah, Sukotjo, C., Ismail, A., Ibrahim, M. S. M., Insani, N., & Utomo, C. P. (2024). Artificial intelligence to predict pre-clinical dental student academic performance based on pre-university results: A preliminary study. Journal of Dental Education, 88(12), 1681–1695. https://doi.org/10.1002/jdd.13673

Mu’tashim, M. L., & Zaidiah, A. (2023). Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta). Seminar Nasional Mahasiswa Bidang Ilmu Komputer Dan Aplikasinya (SENAMIKA), 4(1), 155–166.

Ngaeni, N. S., Kusrini, K., & Kusnawi, K. (2024). Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS Untuk Menentukan Pendekatan Strategi Marketing Berdasarkan Background Target Audiens. Journal of Computer System and Informatics (JoSYC), 5(2), 393–403. https://doi.org/10.47065/josyc.v5i2.4948

Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, & Susanti. (2022). Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest. SATIN - Sains Dan Teknologi Informasi, 8(2), 122–131. https://doi.org/10.33372/stn.v8i2.885

Purba, S. E. M. (2025). A Comparative Study of Drug Prediction Models using KNN, SVM, and Random Forest. Journal of Information Systems and Informatics, 7(1), 378–392. https://doi.org/10.51519/journalisi.v7i1.1013

Puspa, G., Rachmadhan Amri, M. F., & Nugraha, M. P. (2025). Pemanfaatan Random Forest untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa Studi Kasus: Institut Desain dan Bisnis Bali. JIKO (Jurnal Informatika Dan Komputer), 9(2), 413. https://doi.org/10.26798/jiko.v9i2.1886

Sabita, H., & Trisnawati, S. (2023). Perbandingan Algoritma Support Vector Machine dan AdaBoost Dalam Memprediksi Waktu Kelulusan Mahasiswa. TEKNIKA, 17(2), 359–372. https://doi.org/10.5281/zenodo.8220872

Satrio Junaidi, Valicia Anggela, R., & Kariman, D. (2024). Klasifikasi Metode Data Mining untuk Prediksi Kelulusan Tepat Waktu Mahasiswa dengan Algoritma Naïve Bayes, Random Forest, Support Vector Machine (SVM) dan Artificial Neural Nerwork (ANN). Journal of Applied Computer Science and Technology, 5(1), 109–119. https://doi.org/10.52158/jacost.v5i1.489

Wicaksono, S. A., Wijaksana, C. P., Ngaeni, N. S., & Utami, E. (2023). Systematic Literature Review of the Development of Financial Information Systems in Churches. International Journal of Computer and Information System (IJCIS), 4(3), 178–182. https://doi.org/10.29040/ijcis.v4i4.143

##submission.downloads##

Diterbitkan

2025-09-23

Cara Mengutip

Ngaeni, N. S. (2025). COMPARATIVE ANALYSIS OF RANDOM FOREST AND SUPPORT VECTOR CLASSIFIER FOR PREDICTING STUDENTS’ ON-TIME GRADUATION. Jurnal Pilar Nusa Mandiri, 21(2), 247–255. https://doi.org/10.33480/pilar.v21i2.7048