






Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
On-time graduation is one of the key indicators of educational quality in higher education. The influencing factors range from students’ internal issues and academic abilities to institutional policies. However, academic management has not yet been able to classify the data and analyze the underlying factors contributing to delayed graduation. By identifying these factors, management can formulate appropriate academic solutions or policies. The purpose of this study is to build a prediction model for on-time graduation using machine learning algorithms. This study compares the classification performance of the Random Forest algorithm and the Support Vector Classifier (SVC). The dataset, consisting of 1,298 student records, includes academic data such as study program, GPA, TOEFL score, cohort year, and study duration. Model performance was evaluated using accuracy, F1 score, and ROC-AUC metrics, followed by a confusion matrix analysis. The final evaluation revealed that the Random Forest algorithm achieved the best performance, with an accuracy of 91.86%, an F1 score of 91.86%, and a ROC-AUC of 97.39%. Meanwhile, the SVC model obtained an accuracy of 81.12% and an F1 score of 81.09%. Based on these results, it can be concluded that the Random Forest algorithm is more reliable as a prediction model in the academic domain. The main contribution of this study is the development of an early detection system for students at risk of delayed graduation. Furthermore, the findings can serve as a basis for designing more solution-oriented academic policies in accordance with the conditions at STIMIK Tunas Bangsa Banjarnegara.
Darmawan, A., Yudhisari, I., Anwari, A., & Makruf, M. (2023). Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest. Jurnal Minfo Polgan, 12(1), 387–400. https://doi.org/10.33395/jmp.v12i1.12388
Dewi, A. C., Hermawan, A., & Avianto, D. (2024). Classification of Customers’ Repeat Order Probability Using Decision Tree, Naïve Bayes and Random Forest. Jurnal Pilar Nusa Mandiri, 20(1), 52–59. https://doi.org/10.33480/pilar.v20i1.5243
Diantika, S., Nalatissifa, H., Maulidah, N., Supriyadi, R., & Fauzi, A. (2024). Penerapan Teknik Random Oversampling Untuk Memprediksi Ketepatan Waktu Lulus Menggunakan Algoritma Random Forest. Computer Science (CO-SCIENCE), 4(1), 11–18. https://doi.org/10.31294/coscience.v4i1.1996
Ermamtita, E., & Hafyz, H. (2025). Prediksi Kelulusan Mahasiswa Menggunakan Metode K-Means dan Random Forest. Jurnal Pendidikan Dan Teknologi Indonesia, 5(1), 209–214. https://doi.org/10.52436/1.jpti.577
Hairani, H. (2021). Peningkatan Kinerja Metode SVM Menggunakan Metode KNN Imputasi dan K-Means-Smote untuk Klasifikasi Kelulusan Mahasiswa Universitas Bumigora. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 713–718. https://doi.org/10.25126/jtiik.2021843428
Hermanto, D., Ricoida, D. I., Pibriana, D., & Pribadi, M. R. (2024). Analysis of Student Graduation Prediction Using Machine Learning Techniques on an Imbalanced Dataset: An Approach to Address Class Imbalance. Scientific Journal of Informatics, 11(3), 559–568. https://doi.org/10.15294/sji.v11i3.5528
Imran, B., Hambali, H., Subki, A., Zaeniah, Z., Yani, A., & Alfian, M. R. (2022). Data Mining Using Random Forest, Naïve Bayes, and Adaboost Models for Prediction and Classification of Benign and Malignant Breast Cancer. Jurnal Pilar Nusa Mandiri, 18(1), 37–46. https://doi.org/10.33480/pilar.v18i1.2912
Kartini, Fetty Tri Anggraeny, Aang Kisnu Darmawan, Anik Anekawati, & Ivana Yudhisari. (2023). Early Prediction for Graduation of Private High School Students with Machine Learning Approach. Technium: Romanian Journal of Applied Sciences and Technology, 16, 129–136. https://doi.org/10.47577/technium.v16i.9971
Law, T. J., Ting, C. Y., Ng, H., Goh, H. N., & Albert, Q. (2024). A Review of Graduate on Time Prediction. International Journal on Advanced Science, Engineering and Information Technology, 14(6), 1957–1966. https://doi.org/10.18517/ijaseit.14.6.17475
Lestari, W., Abdullah, A. S., Amin, A. M. A., Nurfaridah, Sukotjo, C., Ismail, A., Ibrahim, M. S. M., Insani, N., & Utomo, C. P. (2024). Artificial intelligence to predict pre-clinical dental student academic performance based on pre-university results: A preliminary study. Journal of Dental Education, 88(12), 1681–1695. https://doi.org/10.1002/jdd.13673
Mu’tashim, M. L., & Zaidiah, A. (2023). Klasifikasi Ketepatan Lama Studi Mahasiswa Dengan Algoritma Random Forest Dan Gradient Boosting (Studi Kasus Fakultas Ilmu Komputer Universitas Pembangunan Nasional Veteran Jakarta). Seminar Nasional Mahasiswa Bidang Ilmu Komputer Dan Aplikasinya (SENAMIKA), 4(1), 155–166.
Ngaeni, N. S., Kusrini, K., & Kusnawi, K. (2024). Analisis Kombinasi Algoritma K-Means Clustering dan TOPSIS Untuk Menentukan Pendekatan Strategi Marketing Berdasarkan Background Target Audiens. Journal of Computer System and Informatics (JoSYC), 5(2), 393–403. https://doi.org/10.47065/josyc.v5i2.4948
Oon Wira Yuda, Darmawan Tuti, Lim Sheih Yee, & Susanti. (2022). Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest. SATIN - Sains Dan Teknologi Informasi, 8(2), 122–131. https://doi.org/10.33372/stn.v8i2.885
Purba, S. E. M. (2025). A Comparative Study of Drug Prediction Models using KNN, SVM, and Random Forest. Journal of Information Systems and Informatics, 7(1), 378–392. https://doi.org/10.51519/journalisi.v7i1.1013
Puspa, G., Rachmadhan Amri, M. F., & Nugraha, M. P. (2025). Pemanfaatan Random Forest untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa Studi Kasus: Institut Desain dan Bisnis Bali. JIKO (Jurnal Informatika Dan Komputer), 9(2), 413. https://doi.org/10.26798/jiko.v9i2.1886
Sabita, H., & Trisnawati, S. (2023). Perbandingan Algoritma Support Vector Machine dan AdaBoost Dalam Memprediksi Waktu Kelulusan Mahasiswa. TEKNIKA, 17(2), 359–372. https://doi.org/10.5281/zenodo.8220872
Satrio Junaidi, Valicia Anggela, R., & Kariman, D. (2024). Klasifikasi Metode Data Mining untuk Prediksi Kelulusan Tepat Waktu Mahasiswa dengan Algoritma Naïve Bayes, Random Forest, Support Vector Machine (SVM) dan Artificial Neural Nerwork (ANN). Journal of Applied Computer Science and Technology, 5(1), 109–119. https://doi.org/10.52158/jacost.v5i1.489
Wicaksono, S. A., Wijaksana, C. P., Ngaeni, N. S., & Utami, E. (2023). Systematic Literature Review of the Development of Financial Information Systems in Churches. International Journal of Computer and Information System (IJCIS), 4(3), 178–182. https://doi.org/10.29040/ijcis.v4i4.143
Hak Cipta (c) 2025 Nurus Sarifatul Ngaeni
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.