
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri 
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
The recognition of Padang traditional foods presents a challenge because of their high visual similarity, which makes manual classification difficult. This study aims to develop an automatic image classification model for Padang foods using the Convolutional Neural Network (CNN) algorithm. The dataset consisted of 1350 images across nine classes of Padang dishes including omelet, chili egg, cow tendon curry, stuffed intestine curry, fish curry, dendeng batokok, rendang, ayam pop, and fried chicken. The CNN architecture was trained for twenty epochs and evaluated using accuracy, loss, confusion matrix, and testing with new images. The results show that the model reached a final training accuracy of 70.2 percent and a validation accuracy of 65 percent, while testing with unseen images produced correct predictions with moderate confidence levels. These findings suggest that CNN is effective for classifying Padang traditional foods and can be applied in culinary promotion, digital food catalogs, and technology based ordering platforms.
Altim, M. Z., Basalamah, A., Kasman,Syamsul, R. A., & Yudhistira, A.. (2023). Implementasi Convolutional Neural Network (Cnn) Untuk Penentuan Kualitas Beras Berdasarkan Bentuk Dan Warna. Jurnal INSTEK (Informatika Sains Dan Teknologi), 8(2), 380–386. https://doi.org/10.24252/instek.v8i2.42968
Ardiansyah, R., & Itje Sela, E. (2023). Implementasi Convolutional Neural Network Untuk Klasifikasi Jenis Beras Berdasarkan Citra Digital. Indonesian Journal of Computer Science, 12(6), 4657–4663. https://doi.org/10.33022/ijcs.v12i6.3520
Citra, E. E., Fudholi, D. H., & Dewa, C. K. (2023). Implementasi Arsitektur EfficientNetV2 Untuk Klasifikasi Gambar Makanan Tradisional Indonesia. Jurnal Media Informatika Budidarma, 7(2), 766. https://doi.org/10.30865/mib.v7i2.5881
Darma Udayana, I. P. A. E., & Nugraha, P. G. S. C. (2020). Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan. Jurnal Teknologi Informasi Dan Komputer, 6(1), 30–38. https://doi.org/10.36002/jutik.v6i1.1001
Fadlia, N., & Kosasih, R. (2020). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (Cnn). Jurnal Ilmiah Teknologi Dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397
Grandis, G. F., Arumsari, Y., & Indriati. (2021). Seleksi Fitur Gain Ratio pada Analisis Sentimen Kebijakan Pemerintah Mengenai Pembelajaran Jarak Jauh dengan K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(8), 3507–3514.
Indraswari, R., Rokhana, R., & Herulambang, W. (2021). Melanoma image classification based on MobileNetV2 network. Procedia Computer Science, 197, 198–207. https://doi.org/10.1016/j.procs.2021.12.132
Iskandar, J. S., & Kristianto, R. P. (2023). Pengenalan dan Klasifikasi Ragam Kue Indonesia menggunakan Arsitektur ResNet50V2 pada Convolutional Neural Network ( CNN ). Prosiding Seminar Nasional AMIKOM Surakarta, 1(November), 81–92. https://ojs.amikomsolo.ac.id/index.php/semnasa/article/view/53
Juli, V. N., & Timur, N. T. (2024). Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network ( CNN ). 2(3).
Linarti, U., Soleliza Jones, A. H., Zahrotun, L., & Rahmawati, A. (2024). Penerapan Metode K-Medoids Guna Pengelompokan Data Usaha Mikro, Kecil dan Menengah (UMKM) Bidang Kuliner Di Kota Yogyakarta. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 7(1), 37–45. https://doi.org/10.55338/jikomsi.v7i1.2194
Mukti, A., Hadiyanti, A. D., Nurlaela, A., & Panjaitan, J. (2023). Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web. Soscied, 6(1), p-ISSN.
Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia. Algor, 2(1), 12–21.
Nurkhasanah, & Murinto. (2021). Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification of Facial Skin Diseases Using the Method of the Convolutional Neural Network. Sainteks, 18(2), 183–190. https://www.kaggle.com/datasets
Sowmiya, S., Umapathy, S., Alhajlah, O., Almutairi, F., Aslam, S., & Ahalya, R. K. (2024). F-Net: Follicles Net an efficient tool for the diagnosis of polycystic ovarian syndrome using deep learning techniques. PLoS ONE, 19(8 AUGUST), 1–22. https://doi.org/10.1371/journal.pone.0307571
Triase, T., & Samsudin, S. (2020). Implementasi Data Mining dalam Mengklasifikasikan UKT (Uang Kuliah Tunggal) pada UIN Sumatera Utara Medan. Jurnal Teknologi Informasi, 4(2), 370–376. https://doi.org/10.36294/jurti.v4i2.1711
Umam, C., & Handoko, L. B. (2020). Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana. Prosiding Seminar Nasional Lppm Ump, 0(0), 527–533. https://semnaslppm.ump.ac.id/index.php/semnaslppm/article/view/199
Wita, D. S., & Liliana, D. Y. (2022). Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network (CNN). Jurnal Rekayasa Teknologi Informasi (JURTI), 6(1), 1. https://doi.org/10.30872/jurti.v6i1.7100
Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). JURNAL GAUSSIAN, 9(3), 273–282. https://doi.org/10.62951/repeater.v2i3.81
Zidni, E., & Akbar, M. (2024). Klasifikasi Citra Makanan Khas Kota Pasuruan menggunakan Convolutional Neural Network. Informatics and Artificial Intelligence Journal, 1(2), 65–72. http://jurnal.forai.or.id/index.php/forai/article/view/10
Hak Cipta (c) 2025 Nabilah Putri Permana, Syafri Arlis

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:

Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri 
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.