ANALYSIS OF DEPRESSION IN COLLEGE STUDENT DURING COVID-19 PANDEMIC USING EXTREAM GRADIENT BOOST

ANALISIS DEPRESI PADA MAHASISWA SELAMA PANDEMI COVID-19 MENGGUNAKAN EXTREAM GRADIENT BOOST

Authors

  • Agung Prabowo Universitas Singaperbangsa Karawang
  • Dharma Ajie Nur Rois Universitas Singaperbangsa Karawang
  • Amar Luthfi Universitas Singaperbangsa Karawang
  • Ultach Enri Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.33480/techno.v18i2.2399

Keywords:

Depression, PHQ-9, XGBoost

Abstract

The Covid-19 pandemic that spreads in Indonesia causes health, economic, and social problems in the community, including mental health. Of course, this mental health problem also hit students. Seeing these conditions, we conducted research on students of the Faculty of Computer Science, University of Singaperbangsa Karawang using the Patient Health Questionnaire-9 which measures a person's level of depression. In this study, we used Extreme Gradient Boost or XGBoost to classify students' depression tendencies. We break down the dataset into training data and testing data with 4 data sharing combinations, they are 80 : 20, 50 : 50, 90 : 10, 70 : 30. The combination of 90 : 10 data sharing has the best performance with accuracy, precision, recall, and F1-scores respectively 92.86%, 94.29%, 92.86% , and 92.06%. This method also has better performance than K-Nearest Neighbor, Random Forest, Multi Layer Perception, Support Vector Machine and Decision Tree .

References

Arieska, P. K., & Herdiani, N. (2018). Pemilihan teknik sampling berdasarkan perhitungan efisiensi relatif. Jurnal Statistika, 6(2), 166–171. https://jurnal.unimus.ac.id/index.php/statistik/article/view/4322/4001

Budiastuti, Dyah & Bandur, A. (2018). Validitas Dan Reliabilitas Penelitian. Mitra Wacana Media. https://www.mitrawacanamedia.com/validitas-dan-reliabilitas-penelitian

Chen, T. et al. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/https://doi.org/10.1145/2939672.2939785

Cherif, I. L. et al. (2019). On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Traffic Classification. 2019 Wireless Days (WD), 1–6. https://doi.org/10.1109/WD.2019.8734193

Ghozali, I. (2013). Aplikasi Analisis Multivariate Dengan Program IBM SPSS 21 Update PLS Regresi. Badan Penerbit Universitas Diponegoro. https://mikroskil.ac.id/pustaka/index.php?p=show_detail&id=7026&keywords

Gullo, F. (2015). From patterns in data to knowledge discovery: What data mining can do. Physics Procedia, 62, 18–22. https://doi.org/10.1016/j.phpro.2015.02.005

Handayani, A., Jamal, A., & Septiandri, A. A. (2017). Evaluasi Tiga Jenis Algoritme Berbasis Pembelajaran Mesin untuk Klasifikasi Jenis Tumor Payudara. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 6(4). https://doi.org/10.22146/jnteti.v6i4.350

Hasanah, U., Fitri, N. L., Supardi, S., & PH, L. (2020). Depression Among College Students Due to the COVID-19 Pandemic. Jurnal Keperawatan Jiwa, 8(4), 421. https://doi.org/10.26714/jkj.8.4.2020.421-424

Karo, I. M. K. et al. (2020). A Hybrid Classification Based on Machine Learning Classifiers to Predict Smart Indonesia Program. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), 1–5. https://doi.org/10.1109/ICVEE50212.2020.9243195

Karo, I. M. K. et al. (2016). Spatial clustering for determining rescue shelter of flood disaster in South Bandung using CLARANS Algorithm with Polygon Dissimilarity Function. In 2016 12th International Conference on Mathematics, Statistics, and Their Applications (ICMSA), 70–75. https://doi.org/10.1109/ICMSA.2016.7954311

Kemdikbud, Pdd. (2021). Profil Perguruan Tinggi Universitas Singaperbangsa Karawang. https://pddikti.kemdikbud.go.id/data_pt/QzRENDE1QjMtOTgyRS00MDM0LUIyOUEtRUU5NDA4MDY4MUEw

Kusuma, M. D. S. et al. (2021). TINGKAT GEJALA DEPRESI PADA MAHASISWA PROGRAM STUDI SARJANA KEPERAWATAN DI INSTITUTE TEKNOLOGI DAN KESEHATAN (ITEKES) BALI. Jurnal Riset Kesehatan Nasional, 5(1), 29–34. https://doi.org/http://dx.doi.org/10.37294/jrkn.v5i1.310

Kusuma, P. D., Marchira, C. R., & Prawitasari, S. (2018). Patient health questionnaire-9 (PHQ-9) efektif Untuk mendeteksi risiko depresi postpartum. Jurnal Keperawatan Respati Yogyakarta, 5(3), 428–433.

Lempang, G. F., Walenta, W., Rahma, K. A., Retalista, N., Maluegha, F. J., & Utomo, F. I. P. (2021). Depresi Menghadapi Pandemi Covid-19 pada Masyarakat Perkotaan (Studi Literatur). Pamator Journal, 14(1), 66–71. https://doi.org/10.21107/pamator.v14i1.9854

Martin, M., & Nilawati, L. (2019). Recall dan Precision Pada Sistem Temu Kembali Informasi Online Public Access Catalogue (OPAC) di Perpustakaan. Paradigma - Jurnal Komputer Dan Informatika, 21(1), 77–84. https://doi.org/10.31294/p.v21i1.5064

Muslim, I., & Karo, K. (2020). Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan. Journal of Software Engineering, Information and Communication Technology, 1(1), 10–16.

Perhimpunan Dokter Spesialis Kedokteran Jiwa Indonesia. (2020). Masalah Psikologis Di Era Pandemi Covid-19. http://www.pdskji.org/home

Satuan Tugas Penanganan Covid-19. (2021). Peta Sebaran Kasus Covid-19 Di Indonesia. https://covid19.go.id/peta-sebaran

Sugiyono. (2014). Statistik untuk Penelitian (E. Mulyatiningsih (ed.)). Alfabeta. https://adoc.pub/statistik-untuk-penelitian.html

Downloads

Published

2021-09-15

How to Cite

Prabowo, A., Nur Rois, D. A., Luthfi, A., & Enri, U. (2021). ANALYSIS OF DEPRESSION IN COLLEGE STUDENT DURING COVID-19 PANDEMIC USING EXTREAM GRADIENT BOOST: ANALISIS DEPRESI PADA MAHASISWA SELAMA PANDEMI COVID-19 MENGGUNAKAN EXTREAM GRADIENT BOOST. Jurnal Techno Nusa Mandiri, 18(2), 87–94. https://doi.org/10.33480/techno.v18i2.2399