PREDIKSI TINGKAT KELULUSAN SISWA ELEARNING BERBASIS ALGORITMA FUZZY C-MEANS
Abstract
Sulitnya melakukan prediksi sebuah kelompok belajar melahirkan banyak metode dalam pengukuran, metode tersebut antara lain clustering. Pada metode ini termasuk jenis unsupervised sebab tidak terdapat satu atributpun yang digunakan untuk memandu proses pembelajaran, semua data diperlakukan sama. Pada pengelompokan ini data yang diproses bersifat kuantitatif sehingga setiap item data mendapat porsi dan perlakuan sama, kondisi datapun juga mirip satu dengan yang lainnya. Data yang diolah berasal dari data primer berupa kelompok jumlah login, akses materi, jumlah membuat thread diforum diskusi, jumlah tanggapan forum komentar diskusi dan jumlah mengerjakan soal latihan. Metode pengolahan dengan algoritma Fuzzy C-Means, adapun data yang diolah sebanyak 257 pengguna khususnya siswa atau mahasiswa. Atribut yang diolah terdiri dari 5 item aktifitas. Untuk hasil akhir terbentuk 2 kelompok dimana kelompok pertama dinyatakan lulus sesuai prediksi dan kelompok kedua tidak lulus. Hasil ini nantinya dibandingkan dengan data real atau empiris sehingga diperoleh jumlah siswa yang lulus dan tidak, sehingga dapat ditarik kesimpulan tingkat keakuratan metode ini dalam jumlah persen. Untuk nilai setiap kelompok diperoleh atribut login 11.961 s/d 27.921, akses materi pembelajaran 10.678 s/d 15.059, membuat thread 3.875 s/d 5.059, keaktifan diforum 9.741 s/d 23.329 dan mengerjakan soal ujian 9.751 s/d 13.420 dinyatakan lulus. Keakuratan diperoleh 78 persen sesuai dengan prediksi algoritma fuzzy c-means. Untuk pengukuran keefektifan algoritma ini digunakan SSE(sum of square error).
References
El-Seoud, M. S. A., Taj-Eddin, I. A. T. F., Seddiek, N., El-Khouly, M. M., & Nosseir, A. (2014). E-Learning and Students’ Motivation: A Research Study on the Effect of E-Learning on Higher Education. International Journal of Emerging Technologies in Learning (iJET), 9(4), 20–26. https://doi.org/http://dx.doi.org/10.3991/ijet.v9i4.3465
Galley, M., Mckeown, K., & York, N. (2003). Improving Word Sense Disambiguation in Lexical Chaining Department of Computer Science 2 Lexical Chaining with a Word Sense Disambiguation Methodology. International Joint Conference on Artificial Intelligence, 1486–1488.
Joao M. Sousa, Uzay Kaymak, S. M. (2002). No Title. A Comparative Study of Fuzzy Target Selection Methods in Direct Marketing.
Kuncoro, T., & Mukhadis, A. (2013). Strategi Pembelajaran Problem Solving, Gaya Belajar Kolb, dan Hasil Belajar Mekanika Rekayasa. Jurnal Ilmu Pendidikan, 18(2). https://doi.org/10.17977/JIP.V18I2.3625
Kuo-Ping Lin, Lin, C.-L., Hung, K.-C., Lu, Y.-M., & Pai, P.-F. (2012). Developing kernel intuitionistic fuzzy c-means clustering for e-learning customer analysis. Ieee. https://doi.org/10.1109/IEEM.2012.6838017
Kusumadewi, Sri; Purnomo, H. (2004). Aplikasi Logika Fuzzy. Graha Ilmu.
Menteri Pendidikan dan Kebudayan Republik Indonesia, M. P. dan K. R. I. PENYELENGGARAAN PENDIDIKAN JARAK JAUH PADA PENDIDIKAN TINGGI, Pub. L. No. 109, 1 (2013). Republik Indonesia. Retrieved from http://sipma.ui.ac.id/files/dokumen/U_PENDIDIKAN_RISET_P2M/MENDIKBUD_PENDD DAN PJJ/permen_tahun2013_nomor109.pdf
Rokach, L., & Maimon, O. (2005). Clustering Methods. In Data Mining and Knowledge Discovery Handbook (pp. 321–352). New York: Springer-Verlag. https://doi.org/10.1007/0-387-25465-X_15
Sismadi, & Kusnadi, Y. (2017). Laporan Hasil Penelitian Mandiri. Jakarta.
Wu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., … Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems (Vol. 14). https://doi.org/10.1007/s10115-007-0114-2
Abstract viewed = 354 times
PDF downloaded = 349 times
The copyright of any article in the TECHNO Nusa Mandiri Journal is fully held by the author under the Creative Commons CC BY-NC license.
- The copyright in each article belongs to the author.
- Authors retain all their rights to published works, not limited to the rights set out on this page.
- The author acknowledges that Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) is the first to publish with a Creative Commons Attribution 4.0 International license (CC BY-NC).
- Authors can enter articles separately, manage non-exclusive distribution, from manuscripts that have been published in this journal into another version (for example: sent to author affiliation respository, publication into books, etc.), by acknowledging that the manuscript was published for the first time in Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri);
- The author guarantees that the original article, written by the stated author, has never been published before, does not contain any statements that violate the law, does not violate the rights of others, is subject to the copyright which is exclusively held by the author.
- If an article was prepared jointly by more than one author, each author submitting the manuscript warrants that he has been authorized by all co-authors to agree to copyright and license notices (agreements) on their behalf, and agrees to notify the co-authors of the terms of this policy. Techno Nusa Mandiri: Journal of Computing and Information Technology (TECHNO Nusa Mandiri) will not be held responsible for anything that may have occurred due to the author's internal disputes.