• Nur Hadianto (1*) Ilmu Komputer STMIK Nusa Mandiri
  • Hafifah Bella Novitasari (2) Ilmu Komputer STMIK Nusa Mandiri
  • Ami Rahmawati (3) Ilmu Komputer STMIK Nusa Mandiri

  • (*) Corresponding Author
Keywords: Loan, Classification, Neural Network, Data Mining, Backpropagation


Payment of loans that experience difficulties in repayment or often called bad credit is a very detrimental thing for the bank, with the occurrence of bad credit the bank does not have the maximum ability to make money for investment. Choosing the right customer must go through the right analysis because the decision to approve or disagree with the loan is the main point that determines the possibility of bad credit. This study aims to classify eligible customers to obtain loans by taking into account existing parameters such as age, total income, number of families, monthly expenditure average, education level and others. This study uses a data mining classification method with a neural network model, to assess the accuracy of data processing using rapid miners then proceed with measurements using confusion matrix, ROC curve. The results of the neural network algorithm after going through confusion matrix testing, the ROC curve shows a very high accuracy value, and the dominant value of AUC and algorithm. The accuracy value is 98.24% with AUC of 0.979


Download data is not yet available.


Arun, K., Ishan, G., & Sanmeet, K. (2016). Loan Approval Prediction based on Machine Learning Approach. 18(3), 2016. https://doi.org/10.9790/0661-1803017981

Defu, Z., Stephen, C. H. L., & Zhimei, Y. (2008). A decision tree scoring model based on genetic algorithm and K-means algorithm. Proceedings - 3rd International Conference on Convergence and Hybrid Information Technology, ICCIT 2008, 1, 1043–1047. https://doi.org/10.1109/ICCIT.2008.110

Fadly, M., Uddin, N., & Sutarto, H. Y. (2002). Flutter Suppression Using Neural Networks : Design and Implementation. (January 2017).

Hadianto, N., Novitasari, H. B., Rahmawati, A., Prasetyo, R., Miharja, J., & Komputer, I. (2019). Klasifikasi peminjaman nasabah bank menggunakan metode neural network. 14(2), 1–7.

Ir. Adi Sucipto, M. K. (n.d.). CREDIT PREDICTION WITH NEURAL NETWORK ALGORITHM Ir . Adi Sucipto , M . Kom . Sains and Technology Faculty Universitas Islam Nahdlatul Ulama Jepara. (15), 978–979.

Iriadi, N., & Nuraeni, N. (2016). kajian penerapan metode klasifikasi data mining algoritma C4.5 untuk prediksi kelayakan kredit pada bank mayapada jakarta. Jurnal Teknik Komputer AMIK BSI (JTK), 2, 132–137.

Larose, D. T. (2005). Discovering Knowledge in Data. New Jersey: Johny Wiley & Sons, Inc.

Marhumi, S. (2017). Analisis Manajemen Perkreditan Untuk Meningkatkan Profitabilitas Pada Bank Bni Wilayah Vii Makassar. Perspektif, 02(01), 2355–2538. Retrieved from www.journal.unismuh.ac.id/perspektif

Putri, C. B. (2018). Klasifikasi Nasabah Thera Bank Membeli Personal Loan Menggunakan Metode Klasifikasi Dalam Machine Learning.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

Sucipto, A. (2012). CREDIT PREDICTION WITH NEURAL NETWORK ALGORITHM Ir . Adi Sucipto , M . Kom . Sains and Technology Faculty Universitas Islam Nahdlatul Ulama Jepara. (15), 978–979.

Wang, Q., Lai, K. K., & Niu, D. (2011). Green credit scoring system and its risk assessemt model with support vector machine. Proceedings - 4th International Joint Conference on Computational Sciences and Optimization, CSO 2011, 284–287. https://doi.org/10.1109/CSO.2011.143

Windarto, A. P. (2017). Implementasi Jst Dalam Menentukan. Sains Komputer & Informatika, 1(1), 12–23.

Yadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. Proceedings - 6th International Advanced Computing Conference, IACC 2016, (Cv), 78–83. https://doi.org/10.1109/IACC.2016.25

Yalidhan, M. D. (2018). Implementasi Algoritma Backpropagation Untuk Memprediksi Kelulusan Mahasiswa. Klik - Kumpulan Jurnal Ilmu Komputer, 5(2), 169. https://doi.org/10.20527/klik.v5i2.152

How to Cite
Hadianto, N., Novitasari, H., & Rahmawati, A. (2019). KLASIFIKASI PEMINJAMAN NASABAH BANK MENGGUNAKAN METODE NEURAL NETWORK. Jurnal Pilar Nusa Mandiri, 15(2), 163-170. https://doi.org/10.33480/pilar.v15i2.658
Article Metrics

Abstract viewed = 167 times
PDF downloaded = 344 times